
Lecture 18
Splay-trees, hashing, skip-lists
TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
11 november 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

18.1

Content

Innehåll

1 Splay-trees 1

2 Hash tables 7
2.1 Collision Handling . 8
2.2 Choosing a hash function . 10

3 Skip-lists 12 18.2

1 Splay-trees

Binary search trees are not unique
Remember the binary search trees:

• Easy to insert and remove elements, but. . .
• ”balance” is determined by the order of insertions and deletions.

Combine with heuristics ”hold recently used elements first” for lists?

• Often, use elements close to the root!

insert: 1,2,4,5,8

insert: 5,2,1,4,8 18.3

The operation splay(k)
A splay tree is a self-adjusting binary search tree with the additional property that recently accessed

elements are quick to access again

• Perform a normal search for k, remember the nodes we pass. . .
• Mark the last node we examine with P

– If k exists in T , it must be in node P,

– otherwise, P is a parent of an empty tree.

• Return to the root and do a rotation at each node to move P upwards in the tree. . . (3 cases)
18.4

1

The operation splay(k)

• zig: parent(P) is the root: rotate around P

Q

P

a b

c a

Q

P

cb

18.5

The operation splay(k)

• zig-zig: P and parent(P) are both left children (or both right children): perform 2 rotations to move
up P

P

Q

a

b

P

a b

c

d

Q

R Q

P

a b

R

c d

R

c d

18.6

The operation splay(k)

• zig-zag: One of P and parent(P) is a left child and the other is a right child or vice versa: perform 2
rotations in different directions.

Q

a

R

P

a b

b c

d
c d

R

P

Q

Note that these rotations can increase the height of the tree! 18.7

2

find and insert
function FIND(k,T)

SPLAY(k,T)
if KEY(ROOT(T)) = k then return (k,v)
else return null

function INSERT(k,v,T)
insert (k,v) in a binary search tree
SPLAY(k,T)

18.8

Example: insertion of 14

18.9

Example: insertion of 14

18.10

Example: insertion of 14

3

18.11

Example: insertion of 14

18.12

Example: insertion of 14

4

18.13

Example: insertion of 14

18.14

delete
function DELETE(k,T)

if k is located in a leaf then
do SPLAY to the parent of the leaf

else if k is located in an internal node then
replace the node with its predecessor in the order
do SPLAY to the parent of the predecessor

It is of course possible to use the successor in the order also. 18.15

Example: removing 8

5

18.16

Example: removing 8

18.17

Example: removing 8

6

18.18

Performance

• Each operation may need to be carried out in a totally unbalanced tree

– thus, no guarantee for O(logn) time in the worst case

• The amortized time is logarithmic

– Each sequence of m operations performed on an initially empty tree lasts for O(m logm) time.

– thus, the amortized cost/time for an operation is O(logn) although individual operations can
behave much worse 18.19

2 Hash tables

Can we find something better?

yes, with the help of hash tables
• Idea: given a table T [0, . . . ,max] storing elements find a suitable table index for each element
• Find a function h such that h(key) ∈ [0, . . . ,max] and (ideally) k1 6= k2⇒ h(k1) 6= h(k2)
• Store each pair key-value (k,v) in T [h(k)]

18.20

Hash tables

18.21

Hash tables

• In practice, hash functions are not given unique values (they are not injective)
• We need collision handling

. . . and

• We need to find a good hash function
18.22

7

2.1 Collision Handling

Collision Handling
Collision occurs when at least 2 keys are hashed to the same slot. 2 principles to handle collisions:

• Linking: keep colliding data in linked lists

– Separate linking: having the linked lists off the table

– Collective linking: store all data in the table

• Open adressing: store all data in the table and let some algorithm to decide which index to use in a
collision

[Eng: Separate Chaining, Coalesced Chaining, Open Addressing] 18.23

Example: hashing with separate linking

• Hash table of size 13
• Hash function h with h(k) = k mod 13
• Sore 10 integer keys: 54, 10, 18, 25, 28, 41, 38, 36, 12, 90

0

1

12

11

10

9

8

7

6

5

4

3

2 41 28 54

18

36 10

90 12 38 25 18.24

Separate linking: find
Given: key k, hash table T , hash function h

• calculate h(k)
• look for k in the pointing out list T [h(k)]

Notation: probe= an access to the linked list

• 1 probe to access the list header (if non-empty)
• 1+1 probing to access the contents of the first list element
• 1+2 probing to access the contents of the second list element
• . . .

A probe (to follow a pointer) takes a constant time. 18.25

Separate linking: failed lookups

• n data elements
• m entries in the table

Worst case:

• all data elements have the hash value: P = 1+n

Average case:

• hash values uniformly distributed over m:
• average length α of the list: α = n/m
• P = 1+α

18.26

Separate linking: successful lookups

Average case:

• accessing T [h(k)] (the first element of a list L): 1
• traversing L⇒ k found after: |L|/2
• expected |L| corresponding to α , thus: expected P = α/2+1

18.27

8

Collective linking: keep an element in the table

• Place the data element in the table
• Extend them with pointers
• Solve collisions by using the first free places

Chains may contain keys with different hash values. but all keys with the same hash value show up in
the same chain

+ better memory utilization - The table can get full -Longer collision chains 18.28

Collective linking

18.29

Open addressing

• Store all elements inside the table
• Use a fixed algorithm to find a vacant place

Sequential/linear probing

• desirable hash index j = h(k) (mod 10 here)
• if conflict arises go to the next free place
• If the last element of the table reached, go to the first element. . .

• Positions near to each other fill up quickly (primary clustering)
• How to make remove(k)?

18.30

Open addressing — remove()
The element to be removed can be part of a collision chain – can we determine it?

If it is part of a chain, we can not only remove the element!

• Since all keys are stored, hash all of the the data left?
• Look through the elements after hashing or drawing together, when appropriate, and stop at the first

available position. . .
• Ignore – insert a mark deleted"if the next place is not empty. . .

18.31

9

Double hashing – or what to do in collision?

• Second hash function h2 calculates increment in case of conflicts
• When Increment value is out of the table, we use modulo m = tableSize

Linear probing is a double hashing with h2(k) = 1 Requirements for h2:

• h2(k) 6= 0 for all k
• h2(k) has no common divisor with m for any k⇒ all table positions can be reached

A common choice h2(k) = q− (k mod q) for q < m, m prime number (i.e. choose a prime number less than
the table size!) 18.32

2.2 Choosing a hash function

What is a good hash function?
Assuming that k is a natural number.

Hashing provides a uniform distribution of hash values, but this depends on the distribution of keys in
the data to be hashed.

Example: Hashing of the surnames in a group of students

• hash function: ASCII-value of the last letter bad choice: the majority of names end with ’n’.
18.33

String hashing in Java
hashCode() for String i Java 1.1

• For long strings: examine just 8-9 evenly placed characters.

• Advantage: save time
• Disadvantage: great potential for bad collision patterns

18.34

Suggestion for hash functions

• Memory address

– Interpreting the memory address where the object to be hashed is stored in as an integer

– Works well in general, but not good for example for numeric keys or string keys.

• Converting to integer

– Interpreting the bits of the key as an integer

– Suitable for keys of shorter length than the number of bits in integers

• Component sum

– Divide the bits of the key into components of fixed length (eg 16 or 32 bits) and sum the
components. (Ignore the overflow.)

– Suitable for numeric keys of constant length greater than or equal to the number of bits in the
integer type.

18.35

10

Suggestion for hash functions

• polynomial accumulation

– Divide the bits of the key in a sequence of components of fixed length (e.g. 8, 16 or 32 bits)

a0a1..an−1

– Evaluate the polynom
p(z) = a0 +a1z+a2z2 + . . .+an−1zn−1

with a fixed value z. (Ignore overflow.)

– Very suitable for hashing the strings. (e.g. z = 33 gives at most 6 collisions on an amount of
50000 English words.)

• Polynomial p(z) can be evaluated in O(n) time using Horners rule:

– The following polynomial calculated successively. Each polynomial i the sequence can be cal-
culated in O(1) time from the previous polynomial in the sequence.

p0(z) = an−1

pi(z) = an−i−1 + zpi−1(z) (i = 1,2, . . . ,n−1)

• We have p(z) = pn−1(z)
18.36

String hashing in Java
hashCode() for String in Java nowadays

18.37

Algorithmic complexity attacks
Player assumption of a uniform distribution of keys to insert any role in practice?

• Obvious situations: air traffic, nuclear power plants, pacemaker
• Surprisingly situations: denial-of-service-attacker

Real attack opportunities [Crosby-Wallach 2003]

• Bro server: send carefully selected packages to (DOS-) attack the server with less bandwidth than a
dial-up modem.

• Perl 5.8.0: insert carefully selected strings in the associative array.
• Linux 2.4.20-core: save files with thoroughly selected names.

18.38

11

Algorithmic complexity attacks in Java

• Goal: Find a family of strings with the same hash value.
• Solution: Javas string-API uses 31-base code for string hashing

18.39

Hashing by integer division
Let m be the table size

h(k) = k mod m

Avoid

• m = 2d : hashing gives the last d bits in k
• m = 10d : hashing gives the last d numbers

It is usually suggested to use prime numbers for m Examine samples from real data to experiment with
hashing parameters.

See http://burtleburtle.net/bob/hash/doobs.html for other opinions. 18.40

3 Skip-lists

Skip-lists

• A hierarchical linked list. . .
• A randomized alternative to implement ADT Dictionary
• Insertion uses randomization (”coin toss”)
• Good performance in the expected case
• Worst case performance of skip-lists occurs very rarely (>250 data element, the risk that the search

time is more than 3 times than expected is under 10−6)
18.41

Skip-list data structure

• Levels L1, . . . ,Lh of nodes (keys, values)
• Same nodes exist in different -several- levels (tower)
• Special keys: −∞ and +∞ . . . less/greater than each real key. . .
• Several levels of doubly linked lists, sparser higher

– Level 1: all nodes in a doubly-linked list between−∞ and +∞ arranged according to ’<’-relation

– In average, one half of the nodes exists in Li and also in Li+1

– Special keys −∞ and +∞ exist in all levels

– Only −∞ and +∞ exist in level Lh
18.42

12

http://burtleburtle.net/bob/hash/doobs.html

Example: a skip-list

18.43

Search
Search for key k:

• Follow the list of highest level. . .

– Stop before reaching any ki > k (we risk to miss what we’re looking for)

– If we found the right, return it, otherwise. . .

• We have been searching in one level:

– Have we found the key?

– No, change to next lower level (via ”the last tower”) and keep looking

– Returns: the largest key ki ≤ k (which can be +∞)
18.44

Search
Search for key k:

• Similarities with binary search – but for lists
• Example: find(18)

18.45

Insertion
function INSERT(x)

P← FIND(x)
if P.value < x then

insert a new list node after P
”toss a coin” to determine how high the ”tower” is:
while ”toss”=yes do

increase the tower height with one step
(increase possibly the height of the skip-list)

18.46

13

Example: insert(20)

18.47

Removing. . . and characteristics

• Similar insert:

– Search

– if found, remove it and fix the links between the towers

• The worst case time for find, insert and remove in a skip-list with n inserted element is O(n+h)
• However, the expected execution time (assuming that the keys are uniformly distributed) is O(logn)

if the search starts at height blognc
18.48

14

	Splay-trees
	Hash tables
	Collision Handling
	Choosing a hash function

	Skip-lists

