Lecture 17
Trees

TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
8 november 2016

Jalil Boudjadar, Tommy Féarnqvist. IDA, Linkdping University

Content

Innehall

] EimEo! taE!es 1
! R l EEstract gata tzﬁes 1
[2 Tmplementation] vt v i e e e e 2

2 Trees

2.1 Basicconcepts| e

.......................................
. Binary search trees| e
D6 AVLIOEN - -« « o o o oo e e e e e e 1

D7 (Z3)UCS|. « o o o oee e e e e e 2
28 B-treed

3
3
5
2.3 Representation of binary trees| L 6
7
8
1

1 Symbol tables
Symbol tables

e Abstraction of key-value pairs
— Insert a value with a specified key

— Given a key, search the corresponding value

1.1 Abstract data types
ADT Set

e Domain: sets of keys

e Typical operations:

size() the number of keys in the set

isEmpty() check whether the set is empty or not

contains(k) returns true if & is in the set, otherwise false

put(k) inserts k in the set

remove (k) removes k from the set

171

17.2

17.3

17.4

ADT Map

e Domain: sets of items/pairs (key, value) The sets are partial functions that map keys to values

e Typical operations:

size() the number pf pairs in the set

isEmpty() checks whther a set is empty

get(k) retrieve the information acciated to k or null if the key does not exist

put(k,v) adds (k,v) to the set and returns null if & is new; otherwise it replaces the value of v
and returns the old value

remove(k) removes element (k,v) from the set and returns v; otherwise it returns null if the
element does not exist

ADT Map

e Example:

course database: (code, name)

memory allocation (address, value)

matrix: ((row, column), value)
— Lunch menu: (day, right)

e Static Mapping: no updates allowed
e Dynamic Mapping: uppdates are allowed

ADT Dictionary

e Domain: sets of pairs (key, value) The sets are relations between keys and values!

e Typical operations:
— size() number of pairs in the set
— isEmpty() checks whether a set is empty
— find(k) returns any element associated to key k or null if no element matches with k
— findAll(k) returns all elements with key k
— insert(k,v) adds (k,v) to the set and returns the new element
— remove(k,v) removes and returns pair (k,v); returns null if the element does not exist

— entries() returns the collection of all elements

ADT Dictionary
e Example:
— Swedish-english dictionary ..., (jakt, yacht), (jakt, hunting), . ..
— Telephone directory (several numbers allowed)
— Relation between LiU ID and completed courses
— Lunch menu (with more choices): (day, right)

e Static Dictionary: no updates allowed
e Dynamic Dictionary: updates are allowed

1.2 Implementation

Implementation: Map, Dictionary
e Table/array: sequence of memory areas of the same size
— Unordered: no particular order between T'[i] and T[i + 1]
— Ordered: ...but here T'[i] < T[i+1]
Linked lists
— Unordered
— Ordered

(Binary) search tree
Hashing
Skip-listing

175

17.6

17.7

17.8

17.9

Table representation of Dictionary

Unordered table:
find using linear search

e search failed: n comparisons = O(n) time
e successful search, in the worst case: n comparisons = O(n) time

e successful search, average case with uniform distribution of the requests: %(1 +2+...

comparisons = O(n) time

Table representation of Dictionary

Ordered table (the keys are linearly ordered):
find by binary search

e lookup: O(logn) time
e ...updates are expensive!!

2 Trees

2.1 Basic concepts

Why trees?
Tree structures arise naturally in many situations

e File system

e Hierarchical classification system

e Decision trees

e Hierarchical organization of
— Organizations: department, area, group
— Document: book, chapter, section
— XML-document

e For representing order or priorities

A super tree of mammals

Proidotn

Catatocactya

W Monotremata

I Marsupialia

W Afrotheria
Xenarthra

W Laurasiatheria

M Evarchonotglires

17.10

17.11

1712

17.13

A super tree of mammals

Scandentia
Dermoptera §

Primates

You are here

Lagomorpha

A super tree of mammals
Ry~ oate® sl
H‘;“ODHyﬁoD"“eagms

pit e
& rachyP e

Terminology

e A (rooted) tree T = (V,E) comprises a set V of nodes and edges E, where an edge is a pair (u,v) €
VxV.

e Nodes (sometimes called corners) v € V store data in a parent-child relationship.

e A parent-child relationship between u and v is shown as directed edge (u,v) € E, when the direction
is from u to v.

e Each node has at most one parent node; but can have many siblings.

e At most, there is one node with no parent — root node.

More terminology

e A node degree is the number of node’s children .

e A node with O child is a leaf or a outer/external node. Other nodes are inner/internal.

e A path is a sequence of nodes (vi,vz,...,v), where k > 0 such that v;,v;y; is an edge for i =
1,...k—1.

e The length of a path (vi,vy,...,v) is k — 1. Note that the length of the path (v;) is 0.

e A node n is a parent to another node v iff there exists a path fromntovin T.

e A node nis a descendant to a node v iff there is a path fromvtonin 7.

17.14

17.15

17.16

1717

Again, more terminology

e Depth d(v) of anode v is the length of the path from root to v.
e Height h(v) of a node v is the length of the longest path from v to any descendant of v.

(
e Height h(T) of atree T is the height of the root node.
17.18

Different tree types

Ordered tree: linear order between each node’s children

Binary tree: ordered tree with degree< 2 for each node. A node can have a left child and a right child

Empty binary tree: binary tree with no nodes

Full binary tree: not empty, the degree of each node (number of children) is either 0 or 2. Conse-

quence: the number of leaves = 1 + the number of internal nodes

e Perfect binary tree: full binary tree, all leaves have the same depth. Consequence: the number of
leaves = 2" for a perfect binary tree of height &

e Complete binary tree: approximation to perfect tree for 2" < n < 2"+! — 1. In the distance h — 1,

every level, except possibly the last, is completely filled and all nodes are as far left as possible.

17.19

Full binary tree

Full Binary Tree

17.20

Complete binary tree

2.2 ADT trees

Operations on a node v within a tree T

17.21

parent(v) returns the parent of v, error if v is the root node
children(v) returns te set of children of v

firstChild(v) returns the first child of v or null if v is a leaf
rightSibling(v) returns the right hand sibling of v or null if ther isn’t
leftSibling(v) returns the left hand sibling of v or null there isn’t
isLeaf (v) returns true iff v is a leaf

isInternal(v) returns true iff v is not a leaf

e isRoot(v) returns true iff v is the root node
e depth(v) returns the depth of vin 7
o height(v) returns the height of vin T

Operations on a whole tree T

e size() returns the number of nodes in T
e root() returns the root node of T
e height() returns the height of T

Additionally, for a binary tree

left(v) returns the left hand child of v or error
right(v) returns the right hand child of v or error
hasLeft(v) checks whether v has a left hand child
hasRight(v) checks whether v has a right hand child

2.3 Representation of binary trees

A linked representation
class treeNode<T> nodelnfo: T N:integer children: array[1..N] of treeNode<T>

Or for binary trees

class treeNode<T> nodelnfo: T leftChild: treeNode<T> rightChild: treeNode<T>

C RC

L
leftChild / \\rightChiId

LC RC RC

/ \ N

Complete binary tree: sequential memory

17.22

17.23

17.24

17.25

Sequential memory
Use a table<key,info>[0..n-1]

e leftChild(i) = 2i+ 1 (returns null if 2+ 1 > n)

e rightChild(i) = 2i + 2 (returns null if 2i +2 > n)

o isLeaf(i) = (i <n)and (2i+1>n)

e leftSibling(i) = i — 1 (returns null if i = 0 or odd(i))

e rightSibling(i) =i+ 1 (returns null if i = n — 1 or even(i))
e parent(i) = |[(i—1)/2] (returns null if i = 0)

e isRoot(i) = (i =0)

2.4 Traversing a tree

Traversing a tree

Consider a tree T as if it is a building: nodes are rooms, edges are doors, root node is the entry How
to explore an unknown (bike-free) labyrinth and step out again? make sure that there is always a wall to
the right

Generic routines for traversing trees:
procedure VISIT(node v)
for all u €CHILDREN(v) do
VISIT (u)

Call visit(root(T)), each node in T will be visited exactly once.

Traversing trees
procedure PREORDERVISIT(node v)
DOSOMETHING (V) > before each child node
for all ¥ €CHILDREN(v) do
PREORDERVISIT ()

procedure POSTORDERVISIT(node v)
for all u ECHILDREN(v) do
POSTORDERVISIT ()

DOSOMETHING (V) > after all children

Traversing trees (only binary trees)
procedure INORDERVISIT(node v)
INORDERVISIT(LEFTCHILD(V))
DOSOMETHING (V) > after all left hand descendants
INORDERVISIT(RIGHTCHILD(v))

17.26

17.27

17.28

17.29

Traversing trees
procedure LEVELORDERVISIT(node v)

0O < MAKEEMPTYQUEUE()

ENQUEUE(v, Q)

while not ISEMPTY(Q) do
v <—DEQUEUE(Q)
DOSOMETHING(v)
for all u ECHILDREN(v) do

ENQUEUE(u, Q)

Also known as width first.

2.5 Binary search trees

Binary search trees
Ett A binary search tree (BST) is a binary tree such that:

o the information associated with a node is linearly ordered e.g. (key,value).
The key in each node is:

e greater than (or equal to) the keys of all left descendants, and
e less than (or equal to) the key of all right descendants.

S
N\

34 N

|/41 \

/ 25

13 28 65

ADT Map through binary search trees
procedure FIND(k, V)
if KEY(v) = k then return k
else if k <KEY(v) then
FIND (k,LEFTCHILD(v)) > Processing missing if no leftChild
else
FIND (k,RIGHTCHILD(v)) > Processing missing if no rightChild

Worst case: HEIGHT(T) + 1 comparisons.

ADT Map through binary search trees

insert(k,v): adds (k,v) as a leaf if find fails or just updates the corresponding node if find succeeds
N =255
max = 16

avg =9.1
opt=7.0

:

i

How Tall is a Tree?

Bruce Reed
CNRS, Paris, France

reed@moka.ccr.jussieu.fr

I
A’ \
|
A A M ABSTRACT
| ‘ ’ ‘ [] | Let H, be the height of a random binary search tre¢ on n
AL
Al I
[l

nodes. We show that there exists constants o = 4.31107 ...
and 8 = 1.95... such that E(H,) = alogn — Sloglogn +
O(1), We also show that Var(H,) = O(1).

Worst case: HEIGHT(T) 4 1 comparisons. (Exponential when the keys are inserted in random order.)

17.30

17.31

17.32

17.33

ADT Map through binary search trees
remove(k): find, then. ..

if v is a leaf, remove v

if v has a child u, replace v with u

if v has 2 children, replace v with its successor in the order
(alternatively, with its predecessor in the order)

N =150

max = 16
avg =9.3
opt=6.4

Surprising result: The trees no longer random = time /HEIGHT per operation!
Worst case: HEIGHT(T') 4 1 comparisons. 17.34

ADT Map through binary search trees
Remove node 12 from the tree. 17.35

ADT Map through binary search trees
E.g. 19 is the successor value for 12 in the sub-tree. 17.36

ADT Map through binary search trees
Replace node 12 by node 19. 17.37

ADT Map through binary search trees
Delete the duplication of node 19. 17.38

Binary search trees are not unique
The same data can generate different binary search trees

10

insert: 1,2,4,5,8

insert: 5,2,1,4,8 17.39

Successful lookup
BST if the worst case

e BST degenerated into linear sequence
e the expected number of comparisons is (n+1)/2

Balanced BST

o the depth of the leaves do not differ by more than 1
e O(log, n) comparisons

17.40
Let’'s keep them balanced!
Some common balanced trees:
o AVL-tree
e (2,3)-tree, (a,b)-tree,
e ...Red-Black trees, B-tree
e Splay-trees
17.41
2.6 AVLl-trees
AVL-trees
o Self-balancing BST/height balanced tree BST
e AVL = Adelson-Velskii and Landis, 1962
e Idea: Keep track of balance information in each node
e AVL-propertyFor each internal node v in T the heights of the two subtrees of v differ by at most one
...1n another word. .. For each internal node vin T, b(v) € {—1,0,1} where
b(v) = height(leftChild(v)) — height(rightChild(v))
Otherwise, a rebalancing is needed to restore this property. 17.42
Maximal height of AVL-tree
Proposition 1. The height of a AVL-tree having n elements is O(logn).
What will the result . ..
Proposition 2. We can do find, insert and remove in a AVL-tree in time O(logn) while preserving the
AVL-property.
17.43

11

Example: a AVL-tree

Inserting in a AVL-tree

e The new node leads to change the tree height, which must be balanced.
— One can keep track of the height of the trees in different ways:

* Storing height explicitly in each node
* Storing the balance factor for nodes

e The change is usually described as a right or left rotation of a subtree.
e [t is enough with one rotation to get the tree back into balance.

Inserting in AVL-trees (simple cases)

h+2

()

i A
h+1 h+1 h+1

h+2

ha1 h+2
h 1 h i i
h+1
(© @

Four different rotations

enkel rotation

If b =y it is called a simple rotation.”Rotate up y over z”

12

17.44

17.45

17.46

17.47

Four different rotations

enkel rotation

T

T
If b = y it is called a simple rotation.”Rotate up y over z”

Four different rotations

dubbel rotation

If b = x it is called a double rotation.”Rotate up x over y and then over z”

Four different rotations

dubbel rotation

T L T

If b = x it is called a double rotation.”Rotate up x over y and then over z”

Another way to describe balancing

13

17.48

17.49

17.50

Assume that we have the balance ... 17.51

Another way to describe balancing

... then lost as something mess it up. 17.52

Another way to describe balancing

Do a simple rotation 17.53

Another way to describe balancing

Do a simple rotation 17.54

Another way to describe balancing
Do a simple rotation 17.55

Another way to describe balancing

(i

15

Do a simple rotation

Another way to describe balancing

Do a simple rotation

Another way to describe balancing

Done!

Another way to describe balancing

16

17.56

17.57

17.58

Another example. . . 17.59

Another way to describe balancing

... This time, we drop something in another place. 17.60

Another way to describe balancing

Try a simple rotation again ... 17.61

Another way to describe balancing

... hmm, we have not got the balance 17.62

Another way to describe balancing

Start from scratch . .. and look at the structure in y 17.63

Another way to describe balancing

We’ll have to make a double rotation

Another way to describe balancing

We’ll have to make a double rotation

Another way to describe balancing

19

17.64

17.65

We’ll have to make a double rotation 17.66

Another way to describe balancing

T, T
We’ll have to make a double rotation 17.67

Another way to describe balancing

T, T
We’ll have to make a double rotation 17.68

Another way to describe balancing

20

We’ll have to make a double rotationn

Another way to describe balancing

Done!

Insertion algorithms

e Starting from the new node and look up until finding a node x such that its “grandparent” node z is
not balanced. Mark x’s parent with y.
e Make a reconstruction of the tree like this:

— Rename x,y,z to a,b, c based on their disorder-order.

Let Ty, T1, T, T3 be an enumeration (not ordered) of subtrees to x, y and z. (None of the subtrees
has x, y and z as root).

z exchanged to b, its children are now a and c.

Tp and T are children to a; 7> and T3 are children to c.

Example: inserting in a AVL-tree

21

17.69

17.70

17.71

b
a C
TO T1 T2 T3

Removing nodes from a AVL-tree

e find and remove are the same as in binary search trees
e Update the balance information on the way back to the root
e If not balanced: restructure ...but...

— When we restore the balance in one place, we can cause an imbalance in another
— We must repeat balancing (or keep controlling the balance) until we reach the root

— A maximum of O(logn) rebalancing

2.7 (2,3)-trees
New approach: Drop some of the requirements

e AVL-tree: binary tree, accepts certain (minor) imbalance. . .

e Remember: Full binary tree: non-empty, the degree of each node is either O or 2. Perfect binary tree:
full, all leaves have the same depth

e Can we build and maintain a perfect tree (if we ignore ’binary”’)? Then we would always know the
search time in the worst case exactly!

(2,3)-tree
Previously:

e Ett “pivot element”
o [f we look more to the right
o If we look less to the left

Now:

22

17.72

17.73

17.74

17.75

o Allow multiple (namely 1-2) "pivot elements”
e The number of children of an internal node is the number of pivot elements + 1 (i.e. 2-3)

5 g10m)
OROND o

More general (a,b)-trees

e Each node is either a leaf or has ¢ children, then a < ¢ < b Each node has between a — 1 to b — 1 pivot
elements
e 2 <a<(b+1)/2 (but the root needs to have at least 2 children (or none) even when a > 2 items)

e find works in the same way as previously defined
o insert must check that the node does not become overloaded (in such a case, the node must be divided)
e remove can lead to merge nodes or transfer values between nodes

Proposition 3. The height of a (a,b)-tree containing n elements is Q(logn/logb) and O(logn/loga).
Hojden av ett (a,b)-trdd som lagrar n dataelement dr Q(logn/logb) och O(logn/loga).

= Flattening trees, but needs more processing at node level. 17.77

Insertion in a (a,b)-tree witha=2and b=3

O

Insert(10)

Insert(15)

.

@ Insert(18)
(5) ()

e As long as there is space in the child we find, add an element to the child ...

e If full, split up the new node and move the selected pivot element upward... ... This can happen
repeatedly

@ Insert(17) @ =)
‘ ; ‘ ; (5)12)(19)

23

Removing an element from a (2,3)-tree
3 cases:

e No conditions are broken by the removal
o A leaf is removed (becomes empty) Associate another key to the leaf by re-arrangement, ...ok if
we have siblings with 2+ elements

Overféring

@ Delete(25) SOOCh 35 @
oW @w
S @) @w (i) @)

17.79
Removing an element from a (2,3)-tree
o If A leaf is removed (becomes empty)
e Another key will be associated to the leaf (from the parent level), or
e Merge it with a neighbor
@ Delete(18) e@ ° :
17.80
Removing an element from a (2,3)-tree
e An internal node becomes empty En intern nod blir tom The root: replace with predecessors or
successors in the order Then repair inconsistencies with appropriate merges and transfers. ..
Delete(20) Ersatt... For fa element internt...
...sla ihop 16v ...s1& ihop noder
W M /2
e oD 6 g
() 6) (5)(2) o)1) G10)(0w) G 10 50)
2.8 B-trees
B-trees
e Used to maintain an index of external data (such as contents on a disk memory)
e isa (a,b)-tree where a = [b/2],i.e.b=2a—1
e We can choose b so that a full node just takes up a block on the disk
e By choosing a = [b/2], we always fill an entire block on the disk when two blocks are merged
together!
e B-trees (and variants) used in many file systems and databases
— Windows: HPFS
— Mac: HFS, HFS+
— Linux: ReiserFS, XFS, Ext3FS, JFS
— Databases: ORACLE, DB2, INGRES, PostgreSQL
17.82

24

	Symbol tables
	Abstract data types
	Implementation

	Trees
	Basic concepts
	ADT trees
	Representation of binary trees
	Traversing a tree
	Binary search trees
	AVL-trees
	(2,3)-trees
	B-trees

