
Lecture 16
Recursive search
TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
4 november 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

16.1

Content

Innehåll

1 Recursive search 1
1.1 Exhaustive search . 1
1.2 Backtracking . 9 16.2

1 Recursive search

Solution for recursive problems
if (the problem is simple enough) {

• Solve the problem directly
• Return the solution

} else {

• Divide the problem in one or more minor problems with the same structure as the original problem
• Solve the minor problem
• Combine the result with the solution of the next recursion, until reaching the original problem
• Return the solution

} 16.3

1.1 Exhaustive search

Generate all opportunities

• Usually, you need to generate all objects that meet a given criterion

– Word chains: Generate all words that differ in exactly one letter

• Often, the objects are generated iteratively
• In many cases it is better to consider a method for recursive generation of the opportunities

16.4

Subsets

• Given a set S, we can form a subset of S by selecting a number of elements from S
• Example:

– {0, 1, 2} is a subset of {0, 1, 2, 3, 4, 5}

– {dikdik, ibex} is a subset of {dikdik, ibex}

– {A, G, C, T} is a subset of {A, B, C, D, E, . . . , Z}

– {} ⊆ {a, b, c}

– {} ⊆ {}
16.5

1

Generate subsets

• Many important problems in computer science can be solved by listing all subsets of a set S and find
the “best” of them.

• Example:

– You have a set of sensors on an autonomous craft that all collect data

– Which subset of the sensors you choose to listen to given that each one takes a different time to
read?

16.6

Generate subsets

16.7

Generate subsets

16.8

Generate subsets

2

16.9

Generate subsets

16.10

Generate subsets

16.11

Generate subsets

3

16.12

Generate subsets

• Basic case:

– The only subset of the empty set is the empty set

• Recursive case:

– Choose any element X in the set

– Generate all subsets of the given set when x is removed from the set

– These subsets are subsets of the origin set

– All sets formed by adding the x to these subsets are subsets of the original set
16.13

Track the recursion

16.14

Track the recursion

4

16.15

Track the recursion

16.16

Track the recursion

5

16.17

Track the recursion

16.18

Track the recursion

6

16.19

Track the recursion

16.20

Track the recursion

7

16.21

Analysis of the method

• How many subsets exist for a set of n elements?
• For each element, we choose whether it will be included in the subset or not
• We do n choice with 2 possibilities for each choice, so there are 2n subsets
• The returned collection of subsets use O(2n) memory

16.22

Reducing the memory utilization

• In many cases, we need to perform an operation on each subset but we do not need to save the subsets

– Idea: Generate each subset, treat it and throw it away

∗ Question: How do we do this?
16.23

Permutations

• Write a function permute which takes a string parameter and outputs all possible rearrangements
of the letters in the string. It does not matter in which order the output of the various displacements
occur.

– Example: permute("MARTY") outputs the following sequence of lines:

16.24

8

Reviewing the problem

• Think of each permutation as a set of choices or decision

– Which letter I will place first?

– Which letter I will put in the second place?

– . . .

– Solution Space: set of all possible sets of the decision to explore

• We generate all possible sequences of decisions

– for (each possible initial letter):

– for (each possible second letter):

– for (each possible third letter):

– . . .

– print!

– This is a depth-first search
16.25

Decision trees

16.26

1.2 Backtracking

Backtracking

• A general algorithm for finding solutions to a computational problem by testing partial solutions
and then abandon them (“backtracking”) if they do not fit

– en “brute force”-technique (test all possibilities)

– often (but not always) implemented recursively

• Applications:

– produce all permutations of a set of values

– parse the language

– Game: anagrams, crosswords, 8 queens, Boggle

– Combinatorics and logic programming
16.27

Backtracking-algorithms
General pseudo-code for back-tracking problems:
• Explore (choice):

– if there is no more choice: stay

– otherwise, for each available choice C

∗ Select C
∗ Explore the remaining choices
∗ “deselect” C if necessary (backtrack)

16.28

9

Backtracking strategies

• Ask the following questions when using backtracking to solve a problem:

– What determines the “choices” in this problem?

∗ What is the “base case”? (How do I know when I run out of choice possibilities?)

– How “do” I do a choice?

∗ Do I need to create additional variables to remember my selection?
∗ Do I need to modify the values of existing variables?

– How do I explore the remaining choices??

∗ Do I need to remove the selection made from the list of choices?

– When I finish exploring the remaining choices, what should I do?

– How do I make a choice undone?
16.29

Permutations again

• Write a function permute which takes a string parameter and outputs all possible rearrangements
of the letters in the string. It does not matter in which order the output of the various displacements
occur.

– Example: permute("MARTY") outputs the following sequence of cases:

– (which way leads the problem to be uniform? Recursive?)

16.30

Solution

// Outputs all permutations of the given string.
void permute(string s, string chosen = "") {

if (s == "") {
cout << chosen << endl; // base case: no choices left

} else {
// recursive case: choose each possible next letter
for (int i = 0; i < s.length(); i++) {

char c = s[i]; // choose
s.erase(i, 1);
permute(s, chosen + c); // explore
s.insert(i, 1, c); // un-choose

}
}

}
16.31

Combinations

• Write a function combinations which takes a string s and an integer k, and outputs all possible
strings having k letters. Strings can be formed by different letters from the original string. The order
in which the output of the different combinations occurs is not important.

– Example: combinations("GOOGLE", 3) outputs the sequence of cases in the right:

– To simplify the problem we can assume that the string s contains at least k unique letters.

10

16.32

First solution attempt

// Outputs all unique k-letter combinations of the given string.
void combinations(string s, int length, string chosen = "") {

if (length == 0) {
cout << chosen << endl; // base case: no choices left

} else {
for (int i = 0; i < s.length(); i++) {

if (chosen.find(s[i]) == string::npos) {
char c = s[i];
s.erase(i, 1);
combinations(s, length - 1, chosen + c);
s.insert(i, 1, c);

}
}

}
}

• Problem: prints the same string many times.
16.33

Solution

// Outputs all unique k-letter combinations of the given string.
void combinations(string s, int length) {

Set<string> found;
combinHelper(s, length, "", found);

}

void combinHelper(string s, int length, string chosen, Set<string>& found) {
if (length == 0 && !found.contains(chosen)) {

cout << chosen << endl; // base case: no choices left
found.add(chosen);

} else {
for (int i = 0; i < s.length(); i++) {

if (chosen.find(s[i]) == string::npos) {
char c = s[i];
s.erase(i, 1);
combinHelper(s, length - 1, chosen + c, found);
s.insert(i, 1, c);

}
}

}
}

16.34

Dice Roll

• Write a function diceRoll which takes in an integer representing a number of six-sided dice to
throw and outputs all possible combinations of values that can appear on the dice.

11

16.35

Reviewing the problem

• We generate all possible sequences of decisions

– for (each possible initial letter):

– for (each possible second letter):

– for (each possible third letter):

– . . .

– print!

– This is a depth-first search

• How can we fully explore such a large search space?
16.36

Decision tree

16.37

Solution

// Prints all possible outcomes of rolling the given
// number of six-sided dice in {#, #, #} format.
void diceRolls(int dice) {

vector<int> chosen;
diceRollHelper(dice, chosen);

}

// private recursive helper to implement diceRolls logic
void diceRollHelper(int dice, vector<int>& chosen) {

if (dice == 0) {
cout << chosen << endl; // base case

} else {
for (int i = 1; i <= 6; i++) {

chosen.add(i); // choose
diceRollHelper(dice - 1, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}
16.38

12

Sum of the dice roll

• Write a function diceSum which is similar to diceRoll but takes also a number representing the
sum and outputs the combinations having a summation equal to sum.

16.39

Minimal modification

// Prints all possible outcomes of rolling the given
// number of six-sided dice in {#, #, #} format.
void diceRolls(int dice, int desiredSum) {

vector<int> chosen;
diceSumHelper(dice, desuredSum, chosen);

}
void diceRollHelper(int dice, int desiredSum, vector<int>& chosen) {

if (dice == 0) {
if (sumAll(chosen) == desiredSum) {

cout << chosen << endl; // base case
}

} else {
for (int i = 1; i <= 6; i++) {

chosen.add(i); // choose
diceSumHelper(dice - 1, desiredSum, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}
int sumAll(const vector<int>& v) {

int sum = 0;
for (int k : v) { sum += k; }
return sum;

}
16.40

Wasteful decision tree

13

16.41

Optimization

• We do not need to visit each branch of the decision tree.

– Some branches will obviously not be added to a solution.

– We can terminate, or crop (prune), these branches.

• Inefficiencies in the solution:

– Sometimes the current sum is already too high. (Reaching one would exceed the desired sum.)

– Sometimes the current sum is too low. (any remaining dice would not be enough to achieve the
desired balance.)

– When we finish, the code must always produce the sum.
16.42

Solution

void diceSum(int dice, int desiredSum) {
vector<int> chosen;
diceSumHelper(dice, 0, desiredSum, chosen);

}

void diceSumHelper(int dice, int sum, int desiredSum, vector<int>& chosen) {
if (dice == 0) {

if (sum == desiredSum) {
cout << chosen << endl; // base case

}
} else if (sum <= desiredSum && sum + 6*dice >= desiredSum) {

for (int i = 1; i <= 6; i++) {
chosen.add(i); // choose
diceSumHelper(dice - 1, sum + i, desiredSum, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}
16.43

14

	Recursive search
	Exhaustive search
	Backtracking

