
Lecture 15
Recursion
TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
1 november 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

15.1

Content

Innehåll

1 Introduction 1

2 Recursion in C++ 3
2.1 Implementation of recursion . 5
2.2 Tail call . 5
2.3 Exercise . 6

3 Algorithm analysis 7
3.1 Recursive algorithms . 9
3.2 Typical growth rates . 10 15.2

1 Introduction

Recursion

• Recursion: definition of an operation in terms of itself

– Solving a problem with recursion depends on solving less instances of the same problem

• Recursive programming: Writing functions that call themselves to solve a problem recursively

– An equally powerful substitute for iteration (loops)

– Particularly well suited for solving certain types of problems
15.3

Why we learn recursion?

• “Cultural experience”: Another way to think about problem solving
• Powerful: can solve certain problems better than iteration
• Leading to elegant, simplistic and short code (if used correctly)
• Many (functional languages like Scheme, ML and Haskell) programming languages use recursion

exclusive (no loops)
• A key component of many of the remaining labs in the course

15.4

Exercise

• (For a student in the front row) How many students in total are sitting right behind you in your
“column”?

– You have poor eyesight so you can only see people right next to you. You cannot look back and
count.

– But you may ask questions to the people close to you.

– How can we solve this problem (recursively).

1

15.5

The idea

• Recursion is about breaking down a large problem into smaller instances of the same problem.

– Each person can solve a small part of the problem.

∗ What constitutes a smaller version of the problem that would be easier to answer?
∗ What information from a neighbor could help me?

15.6

Recursive algoritm

• The number of people behind me:

– If there is someone behind me, I ask him how many people are behind him.

∗ When the person behind me answers with a value N I answer then with N +1

– If nobody is sitting behind me, I simply answer 0.

15.7

Recursion and cases partitioning

• Every recursive algorithm involves at least two cases:

– base case: an instance that can be solved directly.

– recursive case: a more complicate instance of the problem that cannot be solved directly, but it
can instead be described in terms of smaller instances of the same problem.

– Some recursive algorithms have more than one base case and recursive cases, but all have at
least one of each.

– A key to recursive programming is the identification of such cases.
15.8

2

Another recursive task
• How can we remove exactly half of all M& M in a large bowl without pour out all of them and

without being able to count them?

– Would it help if more people help in solving the problem? Can each person make a small part
of the work?

– Is there any number of M&M that is easy to double without counting?
∗ (What is the “base case”?)

15.9

2 Recursion in C++

Recursion i C++
• Consider the following function to print a line of stars

// Prints a line containing the given number of stars.
// Precondition: n >= 0
void printStars(int n) {

for (int i = 0; i < n; i++) {
cout << "*";

}
cout << endl; // end the line of output

}

• Write a recursive version of the function (which calls itself).

– Solve the problem without using loops.
– Tips: your solution should print only one star at a time.

15.10

Using recursion properly
• Condense the recursive case to a single case:

void printStars(int n) {
if (n == 1) {

// base case; just print one star
cout << "*" << endl;

} else {
// recursive case; print one more star
cout << "*";
printStars(n - 1);

}
}

15.11

“Recursion-zen”
• It is true, even easier, the base case is when n is 0, not 1:

void printStars(int n) {
if (n == 0) {

// base case; just end the line of output
cout << endl;

} else {
// recursive case; print one more star
cout << "*";
printStars(n - 1);

}
}

• Recursion Zen: The art of properly identifying the best set of cases for a recursive algorithm and
expressing them elegantly.

15.12

3

Exercise - printBinary

• Write a recursive function printBinary which takes an integer and prints out its binary repre-
sentation.

– Example: printBinary(7) prints out 111

– Example: printBinary(12) prints out 1100

– Example: printBinary(42) prints out 101010

– Write the function recursively and without loops
15.13

Case analysis

• Recursion is about solving a small part of a big problem..

– What will be 69,743 in base 2?

∗ Do we know something about its representation in base 2?

– Case analysis:

∗ What is/are simple numbers to print in base 2?
∗ Can we express a greater number in terms of (several) smaller numbers?

15.14

Finding pattern

• Suppose we examine some arbitrary integer N.

– If the representation of N in base 2 is

– Thus, the representation of (N /2) is

– and the representation of (N %2) is

∗ What can we conclude from the fact?

15.15

Solution - printBinary

// Prints the given integer’s binary representation.
// Precondition: n >= 0
void printBinary(int n) {

if (n < 2) {
// base case; same as base 10
cout << n;

} else {
// recursive case; break number apart
printBinary(n / 2);
printBinary(n % 2);

}
}

15.16

Exercise - reverseLines

• Write a recursive function reverseLines which takes a file stream and prints the lines of the

file in reverse.

– Which cases we have to consider?

∗ How can we solve a small part of the problem at a time?
∗ How looks a file that is easy to be reversed?

15.17

4

Pseudocode for reversing

• Reverse lines of a file:

– Read a line R from the file.

– Print out the rest of lines in reverse order.

– Print out R.

• If we have only one way to reverse the rest of the lines in the file. . .
15.18

Solution - reverseLines

void reverseLines(ifstream& input) {
string line;
if (getline(input, line)) {

// recursive case
reverseLines(input);
cout << line << endl;

}
}

• What is the base case?
15.19

2.1 Implementation of recursion

Remember: use of stack – function call

• To implement the compiler features

– Function call: push:a the local environment and return address

– Return: pop:a return address and the local environment

– This allows for recursion.

main() {

int i = 5;

foo(i);

}

foo(int j) {

int k;

k = j+1;

bar(k);

}

bar(int m) {

…

}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

15.20

2.2 Tail call

Tail call recursion
A recursive call is tail recursive iff the first instruction to control the flow coming after the call is return.

• stack is not needed: everything on the stack can be thrown directly
• Tail recursive functions can be rewritten as iterative functions

The recursive call in FACT is not tail recursive:

function FACT(n)
if n = 0 then return 1
else return n·FACT(n−1)

The first instruction after the return from the recursive call is multiplication ⇒ n
must be maintained on the stack 15.21

5

A tail recursive function
function BINSEARCH(v[a, . . . ,b],x)

if a < b then
m← b a+b

2 c
if v[m].key < x then

return BINSEARCH(v[m+1, . . . ,b],x)
else return BINSEARCH(v[a, . . . ,m],x)

if v[a].key = x then return a
else return ’not found’

The two calls are tail recursive. 15.22

Eliminating the tail recursion
The two recursive calls can be eliminated:

1: function BINSEARCH(v[a, . . . ,b],x)
2: if a < b then
3: m← b a+b

2 c
4: if v[m].key < x then
5: a← m+1 {var: return BINSEARCH(v[m+1, . . . ,b],x)}

6: else b← m {var: return BINSEARCH(v[a, . . . ,m],x)}

7: goto (2)
8: if v[a].key = x then return a
9: else return ’not found’ 15.23

Tail recursive factorial function
f act can be rewritten by introducing an auxiliary function:

function FACT(n)
return FACT2(n,1)

function FACT2(n, f)
if n = 0 then return f
else return FACT2(n−1,n · f)

FACT2 is tail recursive⇒ the memory usage for recursion elimination becomes O(1) 15.24

2.3 Exercise

Exercise - pow

• Write a recursive function pow which takes an integer and an exponent and returns the integer raised
to exponent.

– Example: pow(3, 4) returns 81

– Solve this problem recursively and without using loops
15.25

Solution - pow

// Returns base ^ exponent.
// Precondition: exponent >= 0
int pow(int base, int exponent) {

if (exponent == 0) {
// base case; any number to 0th power is 1
return 1;

} else {
// recursive case: x^y = x * x^(y-1)
return base * pow(base, exponent - 1);

}
}

15.26

6

An optimization?

• Note the following mathematical property:

– When does this “trick” works?

– How can we take advantage of this optimization for our code?

– Why cares about tricks when the code already works?
15.27

Solution 2 - pow

// Returns base ^ exponent.
// Precondition: exponent >= 0
int pow(int base, int exponent) {

if (exponent == 0) {
// base case; any number to 0th power is 1
return 1;

} else if (exponent % 2 == 0) {
// recursive case 1: x^y = (x^2)^(y/2)
return pow(base * base, exponent / 2);

} else {
// recursive case 2: x^y = x * x^(y-1)
return base * pow(base, exponent - 1);

}
}

15.28

3 Algorithm analysis

Analysis of Algorithms

What do we analyze?

• Correctness (not in this course)
• Termination (not in this course)
• Efficiency, resources, complexity

time complexity — how long does the algorithm in the worst case?

• as a function of what?
• what is the time step?

Memory Complexity — how much memory does the algorithm need in the worst case?

• as a function of what?
• measured in what?
• remember that function and procedure calls also use memory

15.29

How to compare the effectiveness

• Study the execution time (or memory usage) as a function of the size of the input data..
• When are two algorithms have the same ”effectiveness”?
• When is an algorithm better than another?

Comparison with some elementary functions

n log2 n n n log2 n n2 2n

2 1 2 2 4 4
16 4 16 64 256 6.5 ·104

64 6 64 384 4096 1.84 ·1019

1.84 ·1019µseconds = 2.14 ·108 days = 583.5 millennia 15.30

7

Simplify the calculations

15.31

How the complexity can be specified

växande

f (n)

O(f (n))

Ω(f (n))

Θ(f (n))

• How is the complexity of the growing size of n on the input?
• Asymptotic complexity — what happens when n grows to infinity?
• a lot easier if we ignore the constant factors.

• O(f (n)) – grows high as quickly as f (n)
• Ω(f (n)) – grows at least as fast as f (n)
• Θ(f (n)) – grows as fast as f (n)

15.32

Ordo-notation
f ,g: increasing functions from N to R+

• f ∈O(g) iff there exist c > 0,n0 > 0 such that f (n)≤ c ·g(n) for all n≥ n0 Intuition: Aside from the
constant factors, the growing of f is not faster than g.

• f ∈Ω(g) iff there exist c > 0,n0 > 0 such that f (n)≥ c ·g(n) for all n≥ n0 Intuition: Aside from the
constant factors, the growing of f is at least as fast as g.

• f (n) ∈ Θ(g(n)) iff f (n) ∈ O(g(n)) and g(n) ∈ O(f (n)) Intuition: Aside from the constant factors, f
and g grow with the same rate.

NOTE: Ω is the opposite of O, i.e. f ∈Ω(g) iff g ∈ O(f). 15.33

8

3.1 Recursive algorithms

Execution time for recursive algorithms

• Characterize the execution time with a recurrent relationship
• Find a solution (in closed form) to the recurrent relations
• If you do not recognize the recurrent relation, you can

– “Roll up” the relationship a few times to get forward a hypothesis about a possible solution:
T (n) = . . .

– Prove the hypothesis about T (n) with mathematical induction. If it does not go well, modify
the hypothesis and try again . . .

15.34

Example: the factorial function
function FACT(n)

if n = 0 then return 1
else return n·FACT(n−1)

Execution time:

• time for comparison: tc
• time for multiplication: tm
• time for call and return is neglected

Total execution time T (n). T (0) = tc T (n) = tc + tm +T (n−1), if n > 1 Thus, for n > 0:

T (n) = (tc + tm)+(tc + tm)+T (n−2) =

= (tc + tm)+(tc + tm)+(tc + tm)+T (n−3) = . . .=

= (tc + tm)+ . . .+(tc + tm)︸ ︷︷ ︸
n ggr

+tc = n · (tc + tm)+ tc ∈ O(n)

15.35

Example: Binary search
function BINSEARCH(v[a, . . . ,b],x)

if a < b then
m← b a+b

2 c
if v[m].key < x then

return BINSEARCH(v[m+1, . . . ,b],x)
else return BINSEARCH(v[a, . . . ,m],x)

if v[a].key = x then return a
else return ’not found’

Let T (n) be the time, in the worst case, searching among n numbers with BINSEARCH.

T (n) =
{

Θ(1) if n = 1
T
(
d n

2 e
)
+Θ(1) if n > 1

If n = 2m we get

T (n) =
{

Θ(1) if n = 1
T
(n

2
)
+Θ(1) if n > 1

We can then conclude that T (n) = Θ(logn).
15.36

Master method

Sats 1 (“Master theorem”). If a≥ 1,b > 1,d > 0 so the recurrent relation has{
T (n) = aT

(n
b
)
+ f (n)

T (1) = d

the asymptotic solution

• T (n) = Θ(nlogb a) if f (n) = O(nlogb a−ε) for any ε > 0
• T (n) = Θ(nlogb a logn) if f (n) = Θ(nlogb a)
• T (n) = Θ(f (n)) if f (n) = Ω(nlogb a+ε) for any ε > 0 and a f

(n
b
)
≤ c · f (n) for any constant c < 1 for

all sufficiently large n.
15.37

9

3.2 Typical growth rates

Typical growth rates

growth rate typical code description example T (2n)/T (n)
put together

1 a = b + c sats
two numbers

1

while (n > 1) share
log2 n

{ n = n / 2; ...} half
binary search ≈ 1

for (int i = 0; i < n, i++) find
n

{ ... }
loop

maximum
2

divide
n log2 n see next lecture about mergesort

and conquer
mergesort ≈ 2

for (int i = 0; i < n, i++) double check
for (int j = 0; j < n, j++) loop all pairsn2

{ ... }
4

for (int i = 0; i < n, i++)
for (int j = 0; j < n, j++) triple- Check all
for (int k = 0; k < n, k++) loop triplesn3

{ ... }

8

total- check all
2n see next lecture

search subsets
T (n)

15.38

10

	Introduction
	Recursion in C++
	Implementation of recursion
	Tail call
	Exercise

	Algorithm analysis
	Recursive algorithms
	Typical growth rates

