
Exam: TDDD86 

Data Structures, Algorithms and Programming 
Paradigms 

 

2025-12-16 kl: 14-18 
On-call (jour): Ahmed Rezine (tel:1938) 

Specific instructions for the computer exams: 

• In summary: you log in with your LiU-ID and your private password. You can 

only save files in the desktop. We might leave files for you in the read-only 

“given_files” folder (e.g., lecture slides). You will use the “student chat client”, 

or “student client” to receive information during the exam, to ask questions 

and to submit your solution. More details in the “EXAM_README.pdf” under 

“given_files”.  

 

• Your “student client” should start automatically, if you close it and need to start it 

again, double click on the “fish icon” on your desktop. 

 

• Submit one file with all your answers. The document should only contain text 

with a .txt suffix (e.g., answers.txt). The document should not contain drawings or 

pictures. We will only look at the last submitted file. 

 

• The questions are formulated so that you can answer with any text editor (e.g., vi, 

emacs, gedit, etc). 

 

• You can access OpenDSA using chromium. The start page will list available links. 

General instructions: 

• You may answer in either English or Swedish. 

 

• If in doubt about a question, write down your interpretation and assumptions. 

 

• The exam is divided into two parts:  

o Part A with a maximum of 35 pts. 

o Part B with a maximum of 20 pts. 

 

• Grading: 

o Grade 3 requires at least 20 pts exclusively from Part A.  

o Grade 4 requires grade 3 is secured and at least 8 pts from Part B. 

o Grade 5 requires grade 3 is secured and at least 12 pts from Part B. 

 



Part A 
Problem A.1: Asymptotic execution time (min 0 pts, max 10 pts) 
Consider the five methods f1, f2, f3, f4, f5 and the nine complexity classes (A)-(I) 

depicted below. Assume the manipulated arrays are large enough. The asymptotic analysis 

is to be carried out with respect to the number of elements between the indices lo and hi 

(inclusive), i.e., 𝑛 =  ℎ𝑖 −  𝑙𝑜 + 1. If it simplifies your reasoning, you can restrict the 

analysis to sizes of the form 𝑛 =  2𝑝 or 𝑛 = 2𝑝 − 1 for some natural number 𝑝.  
 

int f1(int a[], int lo, int hi){ 

   int count = 0; 

   int i = j = lo; 

   while(i != hi + 1){ 

      if(a[i] == a[j] + j - i){ 

         count++; 

      } 

      if(j < hi){ 

         j++; 

      }else{ 

         i++; 

         j = lo; 

         if(a[j] == 0) { 

            return -1; 

         } 

      }          

   } 

   return count; 

} 

 

int f2(int a[], int lo, int hi){ 

   for(int i = lo; i <= hi; i++){ 

      for(int j = i + 1; j <= hi; j++){ 

         if(a[i] == a[j] + j - i){ 

            return j - i; 

         } 

      } 

   } 

   return -1; 

} 

 

int f3(int x, int a[], int lo, int hi){ 

  int count = 0;   

  for(int j = lo; j <= hi; j++){ 

     count = count + a[j]; 

  } 

  if((lo == hi) || (count < 0)){ 

     return count; 

  } 

  int m = lo + (hi - lo)/2; 

  int count1 = f3(x, a, lo, m); 

  int count2 = f3(x, a, m + 1, hi); 

  return count1 + count2; 

} 



 

 

int f4(int count, int a[], int lo, int hi){ 

   for(int j = lo; j <= hi; j++){ 

     if(!f4(count + a[lo], lo + 1, hi)){ 

        return f4(count, lo + 1, hi); 

     } 

  } 

     return count == 0; 

} 

 

int f5(int a[], int lo, int hi){ 

  for(int i= lo + 1; i < hi && i < 1000; i++){ 

    if(a[i-1] == a[i]){ 

      return i; 

    } 

  } 

  return 1; 

} 

Complexity classes:  

(A)  𝛩(1) (D) 𝛩(𝑛 log 𝑛)    (G) 𝛩(2𝑛) 

(B)  𝛩(log 𝑛) (E) 𝛩(𝑛2) (H) 𝛩(3𝑛) 

(C)  𝛩(𝑛) (F) 𝛩(𝑛3)   (I)  𝛩(𝑛!) 

 

1. For each one of the 5 methods above, give (without justification!) the complexity 

class among the classes (A-I) that best matches its asymptotic worst-case execution 

time. (For each method, 1pts if correct, 0 if not answered, -1pts if incorrect.) 

 

2. For each one of the 5 methods above, give (without justification!) the complexity 

class among the classes (A-I) that best matches its asymptotic best-case execution 

time. (For each method, 1pts if correct, 0 if not answered, -1pts if incorrect.) 

 

Problem A.2: Hashing and conflict resolution (min 0 pts, max 8 pts) 
Assume linear probing is used (i.e., the probe function is 𝑝(𝑘, 𝑖) = 𝑖 ). In addition, assume 

we use an array of size 9 with indices 0 to 8. The array is used to implement a hash table 

where the hash function hashes the keys A-I as given by the following table: 

Key A B C D E F G H I 

Hash Value 0 3 4 3 2 2 8 8 3 

In other words, the “home position” of key A is 0 and keys E and F hash both to 2. 

 

3. Give the content of each cell of the table after inserting, starting from an empty 

table, the sequence A, B, C, D, E, F, G, H, I (i.e., inserting first A, then B, then 

C … and finally I). (2pts if correct, 0 if not answered, -2pts if incorrect). 

 

4. Answer with yes or no (no need for justification). Is there a sequence that results, 

starting from an empty table, in this table? (2pts if correct, 0 if not answered, -2pts 

if incorrect). 

Index 0 1 2 3 4 5 6 7 8 

Content E F D B A C G H I 



 

5. Answer with yes or no (no need for justification). Is there a sequence that results, 

starting from an empty table, in this table? (2pts if correct, 0 if not answered, -2pts 

if incorrect). 

Index 0 1 2 3 4 5 6 7 8 

Content A G F B D C E I H 

 

6. Answer with yes or no (no need for justification). Recall a hash function 

computes “home positions” for all keys. Assume a hash function that extends the 

first table depicted in this problem and suppose we use linear probing like above. 

Does this hashing approach suffer from secondary clustering? (2pts if correct, 0 if 

not answered, -2pts if incorrect). 

 

Problem A3. Sorting (min 0 pts, max 5 pts) 
 

7. Answer with yes or no (no need for justification). Is it possible to have a 

“heapify” procedure with a worst-case asymptotic time complexity in 𝑂(𝑛) 

that, given any integer array of size 𝑛, reorganizes the integers to obtain a min-

heap? (2pts if correct, 0 if not answered, -2pts if incorrect). 

 

8. Consider the following min-heap:  

 

Index 0 1 2 3 4 5 6 

Content 10 12 15 13 14 16 17 

 

Given an array of integers to sort in increasing order, the heapsort algorithm first 

generates a min-heap (like the one above) and then repeatedly pops elements from 

the min-heap. You can describe a min-heap by a comma separated enumeration of 

its elements. For instance, the min-heap above can be described with the 

enumeration: 10, 12, 15, 13, 14, 16, 17.  

 

Give the sequence of six intermediary min-heaps obtained by heapsort when 

starting from the min-heap above: 

 

a. Second min-heap (0.5pts if correct, 0 if not answered, -0.5pts if incorrect): 

Index 0 1 2 3 4 5 

Content       

 

b. Third min-heap (0.5pts if correct, 0 if not answered, -0.5pts if incorrect): 

Index 0 1 2 3 4 

Content      

 

c. Fourth min-heap (0.5pts if correct, 0 if not answered, -0.5pts if incorrect): 

Index 0 1 2 3 

Content     

 



d. Fifth min-heap (0.5pts if correct, 0 if not answered, -0.5pts if incorrect): 

Index 0 1 2 

Content    

 

e. Sixth min-heap (0.5pts if correct, 0 if not answered, -0.5pts if incorrect): 

Index 0 1 

Content   

 

f. Seventh min-heap (0.5pts if correct, 0 if not answered, -0.5pts if incorrect): 

Index 0 

Content  

 

Problem A4. Binary search trees (min 0 pts, max 8 pts) 
 

Assume the binary search tree 𝑇1 depicted in Figure 1. 

 

 

9. Give a sequence of integers that results, if inserted from the first to the last element 

of the sequence, in the tree 𝑇1 depicted in Figure 1. (2pts if correct, 0 if not 

answered, -2pts if incorrect). 

 

Recall that binary trees can be represented 

sequentially. We adopt the approach described 

in 8.3.1 in OpenDSA. For instance, the binary 

tree in Figure 2 can be sequentially 

represented using the sequence: “A B / D / / C 

E G / / / F H / / I / /”.  The symbol “/” is used 

to represent a “null” child.  

 

Do not draw trees in your answers! Use this 

approach instead.  
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Figure 1. The binary search tree 𝑇1 used in Problem A.4 
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10. Give a sequential representation of the binary search tree obtained by removing 

from tree T1 the node with key value 12. Call the obtained tree 𝑇2. (2pts if correct, 

0 if not answered, -2pts if incorrect). 

 

11. Give a sequential representation of the binary search tree 𝑇3 obtained by inserting 

the key 7 to the tree 𝑇2 you obtained in the previous question. (2pts if correct, 0 if 

not answered, -2pts if incorrect). 

 

12. Give a sequential representation of the binary search tree 𝑇4 you obtain after 

performing a splay(10) operation on the tree 𝑇1 depicted in Figure 1 (observe this 

is tree 𝑇1 described at the beginning of the problem, not those obtained from 

questions 10 or 11 above). (2pts if correct, 0 if not answered, -2pts if incorrect). 

 

Problem A.5: Graphs (min 0 pts, max 4 pts) 
 

13. Give a topological sort of the directed graph depicted in Figure 3, or state that the 

graph does not admit a topological sort if you think it does not admit a topological 

sort. (2pts if two correct and different sorts, 0 if not answered, -2pts otherwise) 

 

 

14. Give the nodes of one maximal strongly connected component in the graph depicted 

in Figure 4 if it has strongly connected components, otherwise state there are no 

strongly connected components in the graph. Observe single nodes without self- 

loops are not considered strongly connected components on their own. (2pts if 

correct, 0 if not answered, -2pts if incorrect). 

 

 

Figure 3. Directed graph for the topological sorting question A5.13 
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Figure 4. Directed graph for the topological sorting question A5.14 



Part B: 
Problem B.1 (min 0pt, max 5pts): 
Recall that the height of a binary search tree is the length of a longest path from the root 

to a leaf. The height of a tree consisting of a single node is therefore 0.  

 

AVL trees. Let 𝑚𝑖𝑛𝑁𝑜𝑑𝑒𝑠(ℎ) be the minimum number of nodes in any AVL tree of 

height ℎ. In other words, given a value ℎ, it is (1) possible to build an AVL tree of height 

ℎ and containing 𝑚𝑖𝑛𝑁𝑜𝑑𝑒𝑠(ℎ) elements, and (2) there is not AVL tree of height ℎ and 

containing 𝑚𝑖𝑛𝑁𝑜𝑑𝑒𝑠(ℎ) − 1 or less elements.  

 

15. Give, without justification, 𝑚𝑖𝑛𝑁𝑜𝑑𝑒𝑠(3). (1pt if correct, 0 if not answered, -1pts 

if incorrect) 

 

16. For any ℎ >  3, give a recurrence relation defining 𝑚𝑖𝑛𝑁𝑜𝑑𝑒𝑠(ℎ) in terms of 

𝑚𝑖𝑛𝑁𝑜𝑑𝑒s for a finite number of shorter trees. (i.e., AVL trees with strictly 

smaller heights). Explain why your recurrence relation is correct for all ℎ >  3. 

(2pts). 

 

17. Given an AVL tree 𝑡, write ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) and nodes(t) for the height and the number 

of nodes of t, respectively. Using the recurrence relation obtained in the question 

above, show (without using the Master Theorem!) that there are three constants 𝑐1 

𝑐2 and 𝑐3 such that, for any AVL tree 𝑡 with ℎ𝑒𝑖𝑔ℎ𝑡(𝑡)  >  3, it is the case that: 

 

 ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) ≤ 𝑐1 log2(𝑛𝑜𝑑𝑒𝑠(𝑡) + 𝑐2) +  𝑐3.  

 

The constants 𝑐1, 𝑐2  and 𝑐3 should be independent of the tree t. (2pts). 

 

Problem B.2 (min 0pts, max 3pts)  
Answer with yes or no (no need for justification). For each answer, 1pts if correct, 0 if not 

answered, -1pts if incorrect:  

 

18. Assume the worst-case time complexity of an algorithm is in Θ(n2). Does this 

contradict the existence of a family of inputs, one input for each size 𝑛, on which 

the algorithm takes 𝑡(𝑛) steps and where we know that 𝑡(𝑛) belongs to 𝛺(𝑛)?  

 

19. Assume the worst-case time complexity of an algorithm is in O(n2). Does this 

contradict the existence of a family of inputs, one input for each size 𝑛, on which 

the algorithm takes 𝑡(𝑛) steps and where we know t(n) belongs to 𝛺(𝑛2 log(𝑛))?  

 

20. Assume the best-case time complexity of an algorithm is in Ω(n2). Does this 

contradict that there are constants 𝑐1, 𝑐2 and 𝑐3 such that the algorithm always takes 

(⌊𝑐1𝑛 log(𝑛)⌋ + 𝑐2𝑛 + 𝑐3) steps? 

 

 



Problem B.3 (max 12 pts): 
You will be asked to provide codes for C++ solutions. These codes will manipulate C++ 

std vectors of integers using instructions and methods like those used by the method foo 

listed below. You should not use vector methods other than those needed for getting the 

size of a vector and for reading or writing the vector content at some index (similar to 

foo). The listed method foo gets as input a reference to a vector of integers together with 

references to two integers. Operations such as reading or writing a vector at some 

position, or passing a reference to a vector as a parameter are considered constant time. 

Obtaining the min/max integer values with numeric_limits<int>::min() and 

numeric_limits<int>::max() are also constant time. Observe this yields a worst-case 

time complexity in Θ(n) for the method foo (where n is the number of elements in the 

input vector p). 

 
int foo(const vector<int>& p, int& min, int& max){ 

  min = numeric_limits<int>::max(); 

  max = numeric_limits<int>::min(); 

  int sum = 0; 

  for(int i = 0; i < p.size(); i++){ 

    if(min > p[i]){ 

      min = p[i]; 

    } 

    if(max < p[i]){ 

      max = p[i]; 

    } 

    sum = sum + p[i]; 

  } 

  return sum; 

} 

 

The single buy – single sell maximum profit problem 

Assume you are allowed to buy a single item and then to sell it (in that order, i.e., buy 

first then sell). You can buy and sell on the same day (you get a profit of 0 sek), or on any 

two different days as long as selling does not occur before buying. You want to make the 

largest possible profit. For this, you are given access to the future 𝑛 prices of the item. 

For instance, if 𝑛 = 6 and the prices are given by the vector prices below: 

  

Time 0 1 2 3 4 5 

Price 50 60 10 40 5 30 

Change  10 -50 30 -35 25 

 

Then a maximum profit can be made by buying the item on day 2 (for 10 sek) and by 

selling it on day 3 (for 40 sek), thus making a profit of 30 sek. We will consider different 

approaches to identify an “optimal interval” (i.e., to identify buying and selling points to 

maximize the profit).  

 

21. A brute force solution. Give a C++ implementation of a method:  
int brute(const vector<int>& prices, int& bp, int& sp) 



that computes the maximum profit given a vector prices of size 𝑛 together with 

the corresponding buying index bp and selling index sp. The return value is the 

largest profit and the parameters bp and sp are passed by reference and are only 

used to return buying and selling indices giving the largest profit. Their initial 

value, when calling brute, should not influence the execution of brute. The 

worst-case asymptotic time complexity of brute should be in Θ(n2). Explain why 

your solution is correct (i.e., why is it that the computed values of 𝑏𝑝 and 𝑠𝑝 and 

the one returned by the method correspond to a maximal profit). (2pt). 

 

22. A divide and conquer solution. Suppose you are given a range [𝑙𝑜, ℎ𝑖] with 0 ≤
 𝑙𝑜 ≤  ℎ𝑖 <  𝑛 where 𝑛 is the size of a vector of prices. Let 𝑚𝑖𝑑 be the midpoint 

(in terms of indices) between indices 𝑙𝑜 and ℎ𝑖. The optimal profit is obtained by 

buying the item at an index “𝑏𝑝” and selling it at an index “𝑠𝑝”.  Observe that 𝑠𝑝 

might be smaller than 𝑚𝑖𝑑 (an interval with maximal profit is before the mid-

point), that 𝑏𝑝 might be larger than 𝑚𝑖𝑑 (the interval is after the midpoint), or nei-

ther (the midpoint is in the interval). Use this observation and give a C++ imple-

mentation of:  
 

int dAc (const vector<int>& prices, int& bp, int& sp) 

 

The method dAc should use the divide and conquer paradigm (involving one or 

more recursive C++ methods that you should give) to return a maximal profit to-

gether with an interval [𝑏𝑝, 𝑠𝑝] that results in the largest profit. The worst-case as-

ymptotic time complexity of your solution should be in Θ(𝑛 log (𝑛)). Explain 

why your solution is correct (i.e., why is it that the computed values of 𝑏𝑝 and 𝑠𝑝 

and the one returned by the method correspond to a maximal profit). (4pts) 

 

23. Complexity of the divide and conquer solution. Clearly show (without using the 

Master theorem) why is it the case that the worst-case asymptotic time complexity 

of your solution is in Θ(𝑛 log (𝑛)). (3pts). 

 

24. Iterative solution. It is possible to obtain a linear solution to the single buy- single 

sell maximal profit problem above by observing that an optimal interval in [0, 𝑗 +
1] is either already an optimal interval in[0, 𝑗] or an interval of the form [𝑖, 𝑗 + 1]. 
Give a C++ solution:  
 

int linear(const std::vector<int>& p, int& bp, int& sp) 

 

The solution should be in Θ(𝑛). Explain why the solution is correct (i.e., why is it 

that the computed values of 𝑏𝑝 and 𝑠𝑝 and the one returned by the method corre-

spond to a maximal profit). (3pts) 


