
Exam: TDDD86 

Data Structures, Algorithms and Programming 
Paradigms 

2023-12-14 kl: 08-12 
 

On-call (jour): Ahmed Rezine (tel: 1938) 

Specific instructions for the computer exams: 

• In summary: you log in with your LiuID and your private password. You can only 

save files in the desktop. We might leave files for you in the read-only 

“given_files” folder. You will use the “student chat client”, or “student client” to 

receive information during the exam, to ask questions and to submit your solution. 

More details in the “EXAM_README.pdf” under “given_files”.  

 

• Your “student client” should start automatically, if you close it and need to start it 

again, double click on the “fish icon” on your desktop. 

 

• Submit one file with all your answers. We will only look at the last submitted file. 

 

• You can access OpenDSA using chromium. The start page will list available links. 

General instructions: 

• You may answer in either English or Swedish. 
 

• Submit a single document (text file or pdf) with your answers. The document 

should only contain text (for instance, no pictures, no drawings).  
 

• The questions are formulated so that you can answer with any text editor (e.g., vim, 

emacs, gedit, etc) or an office program (e.g., Open/Libre Office). 

 

• If in doubt about a question, write down your interpretation and assumptions. 

 

• The exam is divided into two parts:  

o Part A with a maximum of 34 pts. 

o Part B with a maximum of 20 pts. 

 

• Grading: 

o Grade 3 requires at least 20 pts exclusively from Part A.  

o Grade 4 requires grade 3 is secured and at least 8 pts from Part B. 

o Grade 5 requires grade 3 is secured and at least 12 pts from Part B. 



Part A 
 

Problem A.1: Asymptotic execution time (8 pts) 
 

Consider the four methods f1, f2, f3, f4 and the nine complexity classes (A)-(I) 

depicted below. Assume the manipulated arrays are large enough in the four methods. 

You can always assume the size n of the problem to be a power of 2. 

 
// Size of the problem is n. You can assume n = 2^p for some integer p. 
void f1(int a[], int n){ 
  for (int i=0; i < n - 1; i++){ 
    int s = i; 
    for(int j = i+1; j < n; j++){ 
      if(a[j] < a[s]){ 
        s = j; 
      }   
    } 
    int tmp = a[s]; 
    a[s] = a[i]; 
    a[i] = tmp; 
} 
 

 

// Size of the problem is n. You can assume n = 2^p for some integer p. 
void f2(int a[], int n){ 
  for (int i = 0; i < n; i++){ 
    int j = i; 
    int x = a[j]; 
    while(j >= 1 && a[j-1] > x){ 
      a[j] = a[j-1]; 
      j = j - 1; 
    } 
    a[j] = x; 
} 
 
 
// Size of the problem is n = v – u. You can assume n = 2^p for some integer p 
int f3(int a[], int u, int v){ 
  if(u >= v){  
    return 0; 
  } 
  if(u + 1 == v){ 
    return 1; 
  } 
  int m = u + (v-u)/2; 
  int x = f3(a, u, m); 
  int y = f3(a, m, v); 
  return x + y; 
} 
 



// Size of the problem is n = v – u. You can assume n = 2^p for some integer p 
int f4(int a[], int u, int v, int b){ 
  if(u >= v){ 
    return 0; 
  }   
  int m = u + (v-u)/2; 
  if(a[m] == 0){ 
    return 0; 
  }     
  int z = 0; 
  for(int i= u; i < v; i++){ 
    if(a[i] == b){ 
      z = z + 1; 
    } 
  } 
  int x = f4(a, u, m, b + 1); 
  int y = f4(a, m, v, b + 1); 
  return x + y + z; 
} 

 

Complexity classes:  

(A)  𝛩(1) (D) 𝛩(𝑛 log 𝑛)  (G) 𝛩(2𝑛) 

(B)  𝛩(log 𝑛) (E) 𝛩(𝑛2) (H) 𝛩(3𝑛) 

(C)  𝛩(𝑛) (F) 𝛩(𝑛3)   (I)  𝛩(𝑛!) 

 

1. For each one of the 4 methods above, give (without justification!) the complexity 

class among the classes (A-I) that best matches its asymptotic worst-case 

execution time. (4pts). 

 

2. For each one of the 4 methods above, give (without justification!) the complexity 

class among the classes (A-I) that best matches its asymptotic best-case execution 

time. (4pts). 

 

Problem A.2: Hashing and conflict resolution (8 pts) 
Assume we use an array of size 7 with indices 0 to 6. The array is used to implement a 

hash table where the hash function (i.e., the hash value or the “home position” of each 

key) is given by the following: 

 

Key Hash value 

A 1 

B 2 

C 6 

D 4 

E 5 

F 6 

G 1 

 

Assume Linear probing is used (i.e., the probe function is 𝑝(𝑘, 𝑖) = 𝑖 ). 



 

3. Give the content of each cell of the table after inserting, starting from an empty 

table, the sequence F, E, D, C, B, A, G. (2pts). 

 

4. Answer with yes or no (no need for justification). A wrong answer counts 

negative. Is there a sequence that results, starting from an empty table, in this 

table? (2pts if correct, 0 if not answered, -2pts if incorrect). 

Index 0 1 2 3 4 5 6 

Content C F D B E A G 

 

5. Answer with yes or no (no need for justification). A wrong answer counts 

negative. Is there a sequence that results, starting from an empty table, in this 

table? (2pts if correct, 0 if not answered, -2pts if incorrect). 

Index 0 1 2 3 4 5 6 

Content F G A B D E C 

 

6. Answer with yes or no (no need for justification). A wrong answer counts 

negative. Is there a sequence that results, starting from an empty table, in this 

table? (2pts if correct, 0 if not answered, -2pts if incorrect). 

Index 0 1 2 3 4 5 6 

Content G A B F D E C 

 

Problem A.3: Binary search trees and their traversal (8 pts) 
 

Recall that binary trees can be represented 

sequentially. In this problem (i.e., problem A.3), 

we adopt the approach described in 8.3.1 in 

OpenDSA. For instance, the binary tree in 

Figure 1 can be represented using the sequence: 

“A B / D / / C E G / / / F H / / I / /”.  The symbol 

“/” is used to represent a “null” child. Do not 

draw your trees! Use this approach instead to 

answer the following questions. 

 

Consider this sequence of 15 elements:  

 

S: 10, 15, 11, 5, 1, 3, 4, 9, 13, 7, 14, 8, 12, 2, 6 

 

7. Give a sequential representation (see the description of sequential representations 

of binary trees at the beginning of this problem) of the final binary search tree 

obtained by starting from an empty tree and inserting all the integers of the 

sequence S one after the other (i.e., first insert 10, then 15, then 11 …). Do not 

try to balance the tree. Do not perform splay operations. Call this tree 𝑇1. 

(2pts). 

 

8. List the integer values encountered in a post-order traversal of 𝑇1. (2pts).  

Figure 1. Only relevant for Problem A.3 
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9. Give a sequential representation of the tree 𝑇2 obtained by removing the value 11 

from the tree 𝑇1. Write your assumptions in case you make choices. (2pts). 

 

10. Consider now the tree 𝑇1 (observe the question is about the tree 𝑇1 with 15 nodes 

obtained in question 7 above without any splay operations and without removing 

any node). Give the tree 𝑇3 resulting from performing a splay operation on the 

node containing value 9 in 𝑇1. (2pts). 

 

 

Problem A.4: Graphs (10pts) 
Consider the directed graph in Figure 2. 

 

11. Give a topological sort of the nodes of the directed graph from in Figure 2. (4pts). 

12. List the letters in the order they are processed (i.e. marked as visited) in a depth first 

traversal that starts from node A in the graph of Figure 2. Observe the traversal needs 

not pass all nodes! Use the alphabetical ordering to break ties if any. (3pts) 

13. List the letters in the order they are processed (i.e., marked as visited) in a breadth 

first traversal that starts from node A in the graph of Figure 2. Observe the traversal 

needs not pass all nodes! Use the alphabetical ordering to break ties if any. (3pts) 

 

 

 

 

 

Part B:  
 

Problem B.1 (6pts)  
Answer with yes or no (no need for justification). A wrong answer counts negative. All 

algorithms discussed in this problem take an array of size 𝑛 as input. The algorithms can 
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Figure 2. Directed graph for questions 11, 12 and 13. 



handle arrays of any size. We are interested in the asymptotic time complexity of the 

algorithms, i.e., in the asymptotic number of steps required as the size of the inputs 

increases. A step here is assumed to take a constant amount of time. 

 

1. Assume the worst-case time complexity of an algorithm is in O(𝑛 log 𝑛). Does this 

exclude the existence of an infinite sequence of arrays 𝑎1, 𝑎2, … (where the size of 

each array 𝑎𝑛 is 𝑛) for which the algorithm always terminates in less than 10 steps? 

(1pts if correct, 0 if not answered, -1pts if incorrect). 

 

2. Assume the best-case time complexity of an algorithm is in O(𝑛 log 𝑛). Does this 

exclude the possibility that the algorithm always terminates in less than 10 steps no 

matter the size of the input? (1pts if correct, 0 if not answered, -1pts if incorrect). 

 

3. Assume the best-case time complexity of an algorithm is in Θ(𝑛 log 𝑛). Does this 

exclude the existence of an infinite sequence of arrays 𝑎1, 𝑎2, …  (where the size of 

each array 𝑎𝑛 is n) for which the algorithm always terminates in less than 10 steps? 

(1pts if correct, 0 if not answered, -1pts if incorrect). 

 

4. Assume the worst-case time complexity of an algorithm is in Θ(𝑛 log 𝑛). Does this 

exclude the possibility that the algorithm always terminates in less than 10 steps no 

matter the size of the input? (1pts if correct, 0 if not answered, -1pts if incorrect).  

 

5. Assume the worst-case time complexity of an algorithm is in Ω(𝑛 log 𝑛). Does this 

this exclude the existence of an infinite sequence of arrays 𝑎1, 𝑎2, … (where the size 

of each array 𝑎𝑛 is 𝑛) for which the algorithm always terminates in less than 10 

steps? (1pts if correct, 0 if not answered, -1pts if incorrect). 

 

6. Assume the best-case time complexity of an algorithm is in Ω(𝑛 log 𝑛). Does this 

this exclude the existence of an infinite sequence of arrays 𝑎1, 𝑎2, … (where the size 

of each array 𝑎𝑛 is 𝑛) for which the algorithm always terminates in less than 10 

steps? (1pts if correct, 0 if not answered, -1pts if incorrect). 

 

 

Problem B.2 (4 pts): 
The code listed below is extracted from an template implementation of an extensible array 

called ArrayList. This data-structure allocates an array (referred to with the T pointer 

m_elements) of capacity m_capacity to store its elements. The number of elements 

currently stored is captured by the value of the variable size. As described in the listing, 

the implementation of the “add” method doubles the size of the allocated array each time 

it is about to insert a new element when the array is full (i.e., when m_capacity equals 

size).  

 

7. Clearly show that the average number of assignments “fresh_elements[i] = 

m_elements[i]” (required to copy elements of previous arrays to fresh ones) when 

inserting 𝑛 elements in an empty ArrayList is in O(1).  (4pts). 

 



 
/* 
 * An ArrayList is an ordered collection of elements stored and accessed 
 * with 0-based integer indexes, using an array as the internal representation. 
 */ 
template<typename T> 
class ArrayList { 
   public: 
    
      ... 
    
      // Appends the given value to the end of the list. 
      void add(T value){ 
         if (m_size == m_capacity) { 
         // out of space; resize 
            if(m_capacity == 0){ 
               m_capacity = 1; 
            }else{ 
               m_capacity *= 2; 
            } 
            int* fresh_elements = new int[m_capacity]; 
            for (int i = 0; i < m_size; i++) { 
               fresh_elements[i] = m_elements[i]; 
            } 
            delete[] m_elements;   // free old array's memory 
            m_elements = fresh_elements; 
         } 
         m_elements[m_size] = value; 
         m_size++; 
      } 
 
 
   private: 
      int m_size = 0;                         // number of elements added 
      int m_capacity = 0;                     // length of array 
      T* m_elements = nullptr;                // array of elements 
       
      ... 
 
}; 

Figure 3. Code for problem B.2 

 

Problem B.3 (10 pts): 
The Tower of Hanoi is a classical mathematical puzzle that is often used to introduce 

recursion in programming courses. The state of the puzzle can be captured using three 

stacks: “a”, “b” and “c”. Initially, the stack “a” contains an increasing sequence of integers 

1, 2, …  𝑛 where n is the integer that was first pushed in “a” (hence 1 was the integer that 

was last pushed). Both “b” and “c” are initially empty. The goal of the puzzle is to move 

all integers from “a” to “b” while respecting the following rules: 

• Each move results in one integer being moved from one stack to another. 

• Each move from some stack “s” to another stack “t” consists in two steps: first, the 

integer “x” at the top of “s” is pushed into “t”. Then, “x” is popped from “s”.  

• No integer may be pushed to a stack already containing smaller integers.  

 



The code listed in Figure 4 describes a solution to the puzzle. Observe that n, a, b and c are 

global variables. (This is bad programming, but it simplifies the presentation here). The 

recursive method solve takes a number “m” of integers to be moved from a source stack 

“src” to a destination stack “dst” while using stack “via” as an intermediary stack. Observe 

that the stacks are passed by reference. Hence, the arguments to solve always refer to a, b 

and c, although in different orders.  

 

8. Assume n=3. Give the contents of the three stacks “a”, “b” and “c” before and after 

the move step in the if statement of solve (i.e., the two lines marked with “moving 

top of src to dst” and “finished moving top of src to dst”. There will be 7 such 

moves (so you need to print 8 problem states). (3pts). 

 

9. Let solve_steps(m) be the number of “top”, “push”, and “pop” instructions exe-

cuted in the worst case by a call to solve(m, src, dst, via) when the argument m 

is smaller or equal to the number of elements in the stack src. State a recurrence 

definition of solve_steps(m) in terms of solve_steps(m-1). Explain. (3pts). 

 

10. Give a function g such that solve_steps(m) is in Θ(g(m)). Justify using induc-

tion. (4pts). 

 

Figure 1. Code for problem B.3 

#include <iostream> 
#include <stack> 
using namespace std; 
// State of Tower of Hanoi captured with 3 stacks. 
stack<int> a,b,c; 
int n = 3; 
 
//Move m integers from src to dst using via as intermediary 
void solve(int m, stack<int>& src, stack<int>& dst, stack<int>& via){ 
  if(m > 0){ 
    solve(m-1, src, via, dst); 
    //moving top of src to dst 
    dst.push(src.top()); 
    src.pop(); 
    //finished moving top of src to dst 
    solve(m-1, via, dst, src); 
  } 
} 
 
int main(){ 
  //Stack a contains sequence 1, ...n with 1 last pushed 
  for(int i= n; i > 0; i--){ 
    a.push(i); 
  } 
  solve(n,a,b,c); 
  return 0; 
} 
 


