162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

Persistent Software Errors

ROBERT L. GLASS

Abstract—Persistent software errors—those which are not discovered
until late in development, such as when the software becomes opera-
tional—are by far the most expensive kind of error. Via analysis of soft-
ware problem reports, it is discovered that the predominant number of
persistent errors in large-scale software efforts are errors of omitted
logic. . ., that is, the code is not as complex as required by the problem
to be solved. Peer design and code review, desk checking, and ultra-
rigorous testing may be the most helpful of the currently available
technologies in attacking this problem. New and better methodologies
are needed.

Index Terms—Complexity, omitted logic, persistent software error,
research in the large, software problem report, testing rigor.

INTRODUCTION

T IS well known that software errors vary in expense. That

is, software errors which are found quickly and easily, such
as syntactic errors and blatantly catastrophic errors, are de-
tected and corrected at little cost (see Fig. 1). On the other
hand, those errors which elude normal software review and
debug practices, and persist into the software operation/
maintenance phase, may be quite expensive.

The expense connected with such errors lies partly in the
cost to detect, partly in the cost to correct, and partly in the
cost of an inoperable or unsafe software product. Although
the first two costs are important, the third is far and away the
most significant. Especially in embedded computer systems,
such as those controlling aircraft in flight, or a rapid transit
vehicle, or a spacecraft, software error cost may be measurable
in lives as well as dollars.

Little has appeared in the literature distinguishing between
errors by cost. Tools and methodologies for the detection and
correction of software errors are proposed and advocated inde-
pendent of their value in identifying high-expense versus low-
expense errors. Software reliability practices and software
reliability research which focus on this dichotomy would
appear to have large payoff. This paper reports on a study
which is an initial effort in that direction.

This study seeks to better understand “persistent” software
errors. An error is defined to be persistent if it eludes early
detection efforts and does not surface until the software is
operational.

Manuscript received July 31, 1979; revised September 2, 1980.
The author is with Boeing Aerospace Company, Seattle, WA 98124.

Maintenance

Fig. 1. Software life cycle: per error fix cost per phase.

THE STUDY

In order to study those kinds of errors, two significant and
mature software products were analyzed. Both are operational
software systems for military aircraft use. Project A involved
150 programmers at the peak person-load, and contains about
a half million instructions in the operational software alone.
Project B involved 30 programmers and about 100 000 instruc-
tions. Thus, these software products may be considered to be
typical of the state-of-the-art in large embedded computer
system software.

The size of these software products is important. The point
has frequently been made in the literature that large software
systems and small software systems are entirely different, and
that research “in the small” (using small programs or data/
people populations) cannot be extrapolated to be equivalent
to research “in the large” [1]-[3], [5], [6]. This study is an
example of research in the large; no other approach is likely
to be meaningful in the world of large, significant software
products.

The method of approach in this study was to examine
project-specific software error reports. State-of-the-art
methodology in embedded computer systems calls for the
filing of a software problem report (SPR) for each software
error detected. The report provides spaces for three cate-
gories of information: 1) a symptomatic description of the
problem from a user point of view, 2) a description of the
problem from an internal software point of view, and 3) a
description of the software correction. See Figs. 2-4.

0098-5589/81/0300-0162$00.75 © 1981 IEEE

Authorized licensed use limited to: Linkoping University Library. Downloaded on January 09,2022 at 13:56:03 UTC from IEEE Xplore. Restrictions apply.

GLASS: PERSISTENT SOFTWARE ERRORS

163

SOFTWARE PROBLEM REPORT

SPR No.
PROBLEM: {(Prepared by User)
Originator's Name Organization Phone No.
Comorert Py Comput Vo 1o ot
Description of Problem: Thé L[ﬂé(‘ e %Y‘ a 4_\/@1 ‘L&
Classification DQO\‘\"COY‘M un tusk PMSD (S kQ»Qog_LQ.Q._._
RError Tke, Softwa re C,lﬁegé S ‘Hr:\a_dp\ . base
Ointormation [n - { { "
[ORevision Reguest '_VM 50'@ tware mpst ex Dﬂhéo L+$ QOG c +D

e

Aetermine

Hhe D,QaJ("Forwx dectifotion

comb inatien

LS

wal i,

Correction Required by Date

Authorizing Signature

Reference UER No.

Organization Date

Received Date - Time

ANALYSIS: (Prepared by organization responsible for software)

a Coding Error Explanation:

m Design Error

Tneoflicient braun pouer QQDD»(/Q-&

_duwi Lng

desigin
J

[software Not in Error,

‘Explain’

[Error Previously Reported

On SPR No.

[Others, Explain

Documentation Impact

Milestone
1 2 3 4
0O 0 o g
5 6 7 8
0O 0 O 0o
Signature Organization Date
CORRECTION: (Brief description of work performed, including test cases used to confirm correction)
sowtion: __Mod) u@«j code 4o check if Aestination i3
Sevviced 105 Pﬂoﬁ-‘porm 2co e un M\Pm‘(’ dota,
~or ‘913 bzt ‘D,Qa*“Por‘M S.
i N
Pun Module Tast pm3.} CmeP,Qé'}ecm
g Mod/Programs Changed D”s::‘ Léla:o
Work Performed by {Signature) Date
g CONFIRMATION: Corrections Verified by Product Assurance
é Signature Date
SIMTMNoLs)
2
Rf Available in (Version ID)
X

WHITE = Originator Open GREZ=N * Analysis

CANARY = Originstor Clossd

PINK = Product Contro! Closed GOLD = Product Control Open

Fig. 2. Omitted logic.

Typically, large software efforts spawn hundreds or even
thousands of such reports. SPR’s are filed because of real soft-

ware errors; because of problems which turn out to be errors-

not caused by software (e.g., computer hardware errors); and
for changes which are desired by the user but are not errors.
Only the first category of problems—real software errors—was
examined in this study.

The SPR’s were studied in “raw” (handwritten report) form.
Every attempt was made to utilize the information as the pro-
grammer reported it, in order to eliminate deletions or tran-
scription error which result from clerical encoding of the infor-
mation, such as for a computerized database.

The thrust of the study was to divide these SPR’s into cate-
gories, in order to identify the type of errors which are most

Authorized licensed use limited to: Linkoping University Library. Downloaded on January 09,2022 at 13:56:03 UTC from IEEE Xplore. Restrictions apply.

164

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

SOFTWARE PROBLEM REPORT

SPR No.

PROBLEM: (Prepared by User)
Originator's Name Organization Phone No.
System, Processor, or

o el System Test case or
Sfr:,g?;e'".‘ Failing Computer Version 1D Program 1D

Description of Problem: fVl QS w

Classification my)$+ be’ O:{E' A"t [‘ &
ﬁﬁrror Qﬂﬁt lk‘ﬁu Qé] v pD o L\ 224"
Oinformation __(MS:)Z&CQ ﬁp -Hng. ’CU\$+ rawm ‘D P p -
[Revision Request
Correction Required by Date Reference UER No.
Authorizing Signature Organization Date

ANALYSIS: (Prepared-by organization responsible for software)
Received Date s Time ;
WCoding Error Explanation: j\/] S S w V)aé& S +0 QXQ(‘ iA 42 af -H/\e'
[Design Error Qas+ P D 78] P L i [N
m] goftl'ngre Not in Error, h(j PPA M .{_D Qavo l[g 'QGQ LR ahnana 54
xplain .
Mporting bu PPAM due d» a4 CMW?'&.
A J — . & .

O Error Previously Reported (
On SPR No. p

[Others, Explain

Documentation Impact

Milestone

1 2 3 4

0O 0 0 0

5 6 7 8

0O 0o 0o g

Signature Organization Date

CORRECTION: (Brief description of work performed, including test cases used to confirm correction)

Solution: (Y Q+a Lb’\ PS E CT
SE PDTK to cou 35w be_
PD__M32 wnstead of Mz2o.

S

b P : ST, Hand Load

?, Mod/Programs Changed ﬂF A OvYes ONo
Work Performed by (Signature) Date

E CONFIRMATION: Corrections Verified by Product Assurance

; Signature Date

; MTM No.(s)

]] Avsilable in (Version 1D)

x

WHITE = Originator Open GREEN = Anaiysis

CANARY = Orlginator Closed

PINK = Product Control Closed GOLD = Prgduct Controt Open

Fig. 3. Referenced wrong data variable.

prevalent. Here, an unusual approach was taken. Although
error categories are well-known in the literature—TRW devel-
oped a pioneering software error category system [10] —those
categories were not used in this study. Instead, the errors were
allowed to “self-categorize.” That is, as each SPR was re-
viewed, either it was assigned to 1) a category which described
its own nature or 2) a category self-generated by some previous
error.

There is some controversy attached to the use of raw SPR’s
and the use of self-categorization.

Regarding raw SPR’s, the best approach—that is, the one
closest to complete knowledge of the error—would appear to
be actual review of the erroneous code and the correction.
This has been used by Howden in his error data studies [7].
Use of raw SPR’s, however, is an accurate and reproducible
approach, since the SPR form repositories are typically sub-

Authorized licensed use limited to: Linkoping University Library. Downloaded on January 09,2022 at 13:56:03 UTC from IEEE Xplore. Restrictions apply.

GLASS: PERSISTENT SOFTWARE ERRORS

165

SOFTWARE PROBLEM REPORT

[Revision Request

SPR No.
PROBLEM: (Prepared by User)
Originator’s Name Organization Phone No.
Companent Faitrg " Computer Verson 10 Frogam1d
or Project | d _—
Description of Problem: él k 74 2‘“ L C
Classification on ‘Hﬂel &J/\? rD nWxe, ’!\Ol 'DQ_ S LS
NE"OI’ oy c ko«b\ WMM._HQM&———
Oinformation d(.sl% JQQ &LQL_LMML i LS

Correction Required by Date

Authorizing Signature

Reference LER No.

Organization Date

Received Date - Time

ANALYSIS: (Prepared by organization responsible for software)

O coding Error Explanation:

Tneopre X

outpu ESR upon

(O ODesign Error

O Software Not in Error,

_deﬁlc\j‘hi_neb;nammc_

=

Explain

O3 Error Prewouslv Reported
OnsS

O Others, Explain

Documentation Impact
Milestone

1
O

O« O~
0~ 0w
O« O»

5
@]

Signature

Organization Date

CORRECTION: (Brief description of work performed, including test cases used to confirm correction)

Solution: Adinst OU&DU\ Chcd“ao‘l‘ er caum+ ”Qbf\
Aot errop’ % ooucn(,cf £SrR
4o buttpu‘t ‘e entire. Lide
g Mod/Programs Changed C1T SF DH::f Léa':lo
B wbrk Performed by (Signature) Date
E CONFIRMATION: Corrections Verified by Product Assurance
:>‘ Signature Date
EpMTM No.ts)
a.
-: Auvailable in (Version ID) =

WHITE = Originator Open GREEN = Analy-'s

CAMNARY = Originator Closed

PINK = Product Control Closed GOLD = Product Control Open

Fig. 4. Omitted logiq.

ject to configuration management practices. The decision to
use raw SPR’s in this case was purely pragmatic—a large num-
ber of errors can be reviewed rapidly with minimal loss of
authenticity.

Regarding self-categorization, the study was built on the
premise of exploring new ground. That is, to the author’s
knowledge, no one has studied persistent software errors per se
before. To avoid the possibility that traditional error cate-

gories were not appropriate to persistent errors, the traditional
categories were deliberately avoided. Self-categorization, of
course, has the flaw that the judgment of the individual re-
searcher will have some impact on the final results. However,
the traditional categories discussed in [10] are ambiguous
enough that they share this problem.

In any case, 100 software errors from each of two proj-
ects were subjected to review at the raw SPR level via self-

Authorized licensed use limited to: Linkoping University Library. Downloaded on January 09,2022 at 13:56:03 UTC from IEEE Xplore. Restrictions apply.

166

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

TABLE 1
PERSISTENT SOFTWARE ERRORS BY FREQUENCY OCCURRENCE (200
ERRORS EXAMINED, 100 ON EACH PROJECT)

Project Project

Category: A 8 Total:
1. Omitted logic (existing code too simple) 36 24 60
2. Failure to reset data ’ 17 6 23
3. Regression error 5 12 17
4. Documentation in error (software correct) 10 6 16
5. Requirements inadequate 10 1 n
6. Patch in error 0 n n
7. Commentary in error 0 n n
8. IF statement too simple 9 2 n
9. Referenced wrong data variable 6 4 10
10. Data alignment error (leftmost vs. rightmost bits, etc.) 4 3 7
11. Timing error causes data loss 3 3 6
12. Failure to initialize data 4 1 5
13. Other categories of lesser importance (total 4 or less) - Logic too

complex, compiler error, data storage overflow, expression incorrectly

coded, pointer one off, dynamic allocation failure, data not included

in checkpoint, microcode error, data boundary problem, macro error,

multitasking synchronizing error, erroneous.initialization, naming

conventions violated, logic order incorrect, interface mismatch, data

reset in error, parameter mismatch, inefficient code, data declaration

wrong, bad overlay, statement label at wrong place, data clobbered.
NOTE:

An error was allowed to tally in more than one category.

"Failure to

reset data”, for example, is almost always a specific instance of

“omitted logic."
initialize data."

categorization techniques. The errors were considered to be
persistent on the basis that they were the most recent errors
detected on those production-status projects. In most cases,
this proved to be a sufficiently valid basis. In some cases,
however, the errors were spawned by the correction of other
persistent errors (these are commonly called “regression
errors”). Errors of this class were included in the study on
the grounds that such regression errors are just as costly as
nonregression persistent errors; however, these errors were
allowed to self-categorize a category for themselves.

An error was allowed to tally in more than one category.
No attempt was made to provide mutually exclusive categories;
the emphasis was on creating a realistic summary of the data
as it was analyzed, and not to force it to fit an externally
applied artifice. For example, the SPR in Fig. 2 would have
been categorized both as “omitted logic” and “if statement
too simple.”

The process of analysis, then, was simply this: 1) project-
specific, configuration-managed SPR forms, filed in chrono-
logical sequence, were examined one at a time; 2) using the
“problem,” “analysis,” and “correction” information (see
Figs. 2-4) the nature of the error was ascertained; 3) that error
was categorized into its own and/or a previously selected cate-
gory; 4) a tally was added to those categories. At the conclu-
sion of analysis of a set of project-specific SPR’s, tallies for
the (variable number of) categories were summed. The cate-
gories for one project overlapped partially but not entirely
with those of the other project (e.g., in Table I note that
project A had no patching or commentary errors. Presumably
project A did not allow patches and did not file SPR’s on com-
mentary errors).

So are "if statement too simple" and "failure to
Any error could also be a "regression error."

THE FINDINGS

The findings of this study appear to be significant. That is,
the categorized persistent SPR’s show a consistent and definite
pattern (see Table I). .

The major finding of the study is that a large percentage of
persistent software errors are instances of the software not
being sufficiently complex to match the problem being solved.
It is as if the programmer mind is straining to handle the com-
plex interrelationships of a problem solution, and has failed.
For example, a large number of such errors are the result of a
predicate not having enough conditions—some flag or piece of
data was not taken into account when it should have been—or
of a variable not being reset to some baseline value after a
major functional logic segment has finished dealing with it.

Here again, it is important to distinguish between the large
problem and the small problem environment. Intuitively, it
is easily seen that this kind of error is much more likely to
emerge in the large rather than the small problem. The inter-
relationships between data and logic are much more entwined
and complex in the large problem environment. It has even
been said that “a 25 percent increase in problem complexity
leads to a 100 percent increase in program complexity” [11].
And, in fact, most professional programmers have built soft-
ware which they then realized was, in some areas, beyond
their ability to comprehend (in the sense that its results were
not predictable prior to its execution).

These problems of complexity may be considered to be
design errors, and indeed many of them are. It is well known
that design errors dominate the population of software errors
(e.g., [4]). However, it must be recognized that they are the
kind of design error which occurs at the most detailed level,

Authorized licensed use limited to: Linkoping University Library. Downloaded on January 09,2022 at 13:56:03 UTC from IEEE Xplore. Restrictions apply.

GLASS: PERSISTENT SOFTWARE ERRORS

167

TABLE 11
ERROR CATEGORY DEFINITION

Category:

Definition, Example:

1. Omitted logic

Code is lacking which should be present.
Variable A is assigned a new value in logic

path X but is not reset to the value required
prior to entering path Y.

2. Failure to reset data

Reassignment of needed value to a variable omitted.

See example for "omitted logic."

3. Regression error

4. Documentation in error

Attempt to correct one error causes another.

Software and documentation conflict; software
is correct.

User manual says to input a value in

inches, but program consistently assumes the value
is in centimeters. :

5. Requirements inadequate

Specification of the problem insufficient to
define the desired solution.
See Figure 4.

If the requirements failed to

note the interrelationship of the validity
check and the disk schedule index, then
this would also be a requirements error.

6. Patch in error

Temporary machine code change contains an error.

Source code is correct, but “jump to 14000"
should have been "jump to 14004."

7. Commentary in error

Source code comment is incorrect.

Program says DO I=1,5 while comment says
"loop 4 times."

R. IF statement too simple

Not all conditions necessary for an IF

statement are present.

IF A<B should be IF A<B AND B<C.

9. Referenced wrong data variable

10. Data alignment error

Self-explanatory
See Figure 3.

The wrong queues were referenced.

Data accessed is not the same as data desired due

to using wrong set of bits.
Leftmost instead of rightmost substring of
bits used from a data structure.

11. Timing error causes data loss

Shared data changed by a process at an

unexpected time.
Parallel task B changes XYZ just before task A

used it.

12. Failure to initialize data

Non-preset data is referenced before a value

is assigned.

Lesser categories are not Jdefined here.

where the design blends into its code. Since at this level it
is not clear what is design and what is code, it would be
simplistic to attach these errors to the broader category
“design error.”

WHAT TO DO ABOUT THE FINDINGS

The findings of this study are unsettling. They are unset-
tling not because they are a refocusing of our understandings
of software problem solutions. They are unsettling because
it is not at all clear what we should do about them.

Philosophically, what is needed is obvious. We need a hu-
man mind extender, one which makes it possible for the
human mind to conceive problems and solutions beyond its
current capacity. (Note that the analysis section of Fig. 2 says
“insufficient brain power applied during design”)!

That, of course, is naive, given the current state-of-the-art.
And yet, such a solution can at least be considered.

How could the mind be extended in those specific directions?

“Perhaps by very high-order languages, which remove solution
details from the domain of the programmer into the domain of
the compiler (analogous to computer hardware register manage-
ment being moved into the high-order language compiler)?

Perhaps by a design aid which manages and analyzes design
details which the human mind cannot?

Perhaps by a maintenance tool which extracts from existing
software its underlying design elements, and subjects them to
(human-assisted?) consistency analysis?

Those answers are not very satisfying, for they are beyond
the state-of-the-computer-art. And yet they are promising,
because they represent a level of computer application break-
through which, if achieved, obviously transcends the software
engineering problem which spawned it.

Of course, there are mundane but useful answers. If the
designer, the implementer, and the tester employ a deep level
of concentration and rigor, the omitted logic error is prevent-
able or detectable. In-depth technical peer design reviews and
peer code reviews can, for example, detect these errors before
they become “persistent.” Rigorous test case definition,
especially where the test cases are driven by comprehensive
specifications, can also detect most “persistent” errors early.
Simple traditional desk checking, if properly applied, can also
do the job.

The problem with these mundane but useful solutions is
that, in the complex problems being solved by today’s pro-

Authorized licensed use limited to: Linkoping University Library. Downloaded on January 09,2022 at 13:56:03 UTC from IEEE Xplore. Restrictions apply.

168

fessional programmer, the necessary concentration and rigor
is difficult to achieve. Still, given proper application they can
be viable solutions.

CONCLUSION

Persistent software errors are seen to be dominated by a
class of error which can be categorized as ‘“the failure of the
problem solution to match the complexity of the problem to
be solved.” Examples of such errors are predicates with in-
sufficient conditions, and failure to reset data to some base-
line value after its use in a functional logic segment.

The solution to this class of problems is difficult. Somehow,
the programmer’s mind must be extended to encompass com-
plexity beyond its current capability. This is obviously a solu-
tion beyond the current state-of-the-art.

Solutions which can be effective for today’s large software
system producer are maintaining awareness of the problem,
and spending more time analyzing complex interrelationships
via peer review, program desk checking, and rigorous testing.
As is already well known, identifying those (persistent) prob-
lems early in the software life cycle can have major positive
cost impact on total system cost.

ACKNOWLEDGMENT

The ideas and support of D. Feinberg, L. MacLaren, R.
Noiseux, and E. Presson have been important in the develop-
ment of this research.

REFERENCES

[1] F. P. Brooks, The Mythical Man-Month. Reading, MA: Addison-
Wesley, 1975.

[2] J. R. Brown, “Impact of MPP on system development,” RADC-
TR-77-121, 1971.

[3] F. DeRemer and H. H. Kron, “Programming-in-the-large versus
programming-in-the-small,” IEEE Trans. Software Eng., vol.
SE-2, pp. 80-86, June 1976.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 2, MARCH 1981

[4] A. B. Endres, “An analysis of errors and their causes in system
programs,” IEEE Trans. Software Eng., vol. SE-1, pp. 140-149,
June 1975.

[5] R. L. Glass, “Small versus large projects,” in Software Reliability
Guidebook. Englewood Cliffs, NJ: Prentice-Hall, 1979, pp.
21-25.

[6] E. Horowitz, Practical Strategies for Developing Large Software
Systems. Reading, MA: Addison-Wesley, 1975.

[7]1 W. E. Howden, “An analysis of software validation techniques
for scientific programs,” Univ. Victoria Rep. DM-171-1R, 1979.

[8] J. R. Stanfield and A. M. Skrukrud, “Software acquisition man-
agement guidebook—Software maintenance volume,” Syst.
Develop. Corp., TM-5772/004/02, Nov. 1977.

[9]1 N.F. Schneidewind and H. M. Hoffman, “An experiment in soft-

ware error data collection and analysis,” IEEE Trans. Software

Eng.,vol. SE-5, pp. 276-286, May 1979.

A. N. Sukert, “A multi-project comparison of software reliability

models,” in Proc. AIAA Conf. Comput. in Aerospace, 1977.

S. N. Woodfield, “An experiment on unit increase in program

complexity,” IEEE Trans. Software Eng., vol. SE-5, pp. 76-79,

Mar. 1979.

[10]
(11]

Robert L. Glass received the B.A. degree in
mathematics from Culver-Stockton College,
Canton, MO, in 1952, and the M.S. degree in
mathematics from the University of Wisconsin
in 1954.

He is presently a Senior Computing Specialist
with Boeing Computer Services, a member of a
team developing a UCSD Pascal based micro-
computer system. Prior to that, he had spent
25 years in Aerospace computing—3 years with
North American Aviation, 8 with Aerojet-
General, and 14 with Boeing Aerospace. He has been an active par-
ticipant in the Ada language and environment definition process, and
in the JOUIAL language User’s Group. He is experienced in scientific
and commercial applications programming, and especially in the con-
struction of system software. He is the author of three software engi-
neering books—Software Reliability Guidebook (1979), Software
Maintenance Guidebook (1981), and Software Soliloquies (1981)—and
of four humorous computing books, two about computing projects
which failed, and two about computing people. He has been published
in several IEEE and ACM publications, and is a frequent contributor
to Computerworld and Datamation. He has been an ACM National
Lecturer for four years. His outlook is that of the experienced and
skilled software craftsman, not that of a manager or an academician.

Authorized licensed use limited to: Linkoping University Library. Downloaded on January 09,2022 at 13:56:03 UTC from IEEE Xplore. Restrictions apply.

