Input and Output in Java

Byte- and Character-based I/O

File Objects

Introduction

9
jonkv@ida

Two forms of I/O:

Sequential access
Discussed in
NSNS NSNS NS this lecture
V4 / / / / / / / cos
1 2 3 4 5 6 7/ 8

Random access

See
%\ ya" RandomAccess

File

jonkv@ida

Streams 1: The Concept

Sequential access: Provided by a stream

In nature:
Water

In industry, "discretized":
A conveyor belt

= A sequence of elements

= Arriving one at a time

Used in most of Java's I/O classes

jonk\)@ida

Streams 2: Input

Elements can be bytes

Can come from a file on disk, but also:
= A network connection — a natural stream, can't jump back/forward

= An array of bytes — already in memory, but someone wants a stream from us!

Our code, reading

Streams 3: Sources

9
jonkv@ida

Java streams:

One abstract "general input stream"

= abstract class InputStream

One concret subclass for each source

» InputStream isl = new FileInputStream();

= InputStream is2 = new ByteArraylnputStream(myArray);
= InputStream is3 = socket.getInputStream();

InputStream

FileInputStream SocketInputStream ByteArraylnputStream

jonk\)@ida

Streams 4: Qutput

We can write to a file on disk, but also to:
= A network connection

= An array of bytes — someone generates a stream, but we want to capture it!

Our code, writing

destina
tion

Streams 5: Destinations

9
jonkv@ida

Java streams:

One abstract "general output stream"”

= abstract class OutputStream

One concret subclass for each source

= QutputStream osl = new FileOutputStream();

= OutputStream 0s2 = new ByteArrayOutputStream(myArray);
= QOutputStream 0s3 = socket.getOutputStream();

OutputStream

FileOQutputStream SocketOutputStream ByteArrayOutputStream

9
jonkv@ida

Streams 6: Open, use and close

A simple OutputStream example

Remember that these are byte streams

= public static void main(String[] args) {
OutputStream os = new FileOutputStream('info.dat");

os.write(127);
os.write(new byte[] {6, 7, 8 }); But file I/O can lead to exceptions!

os.close();

}

jonkv@ida

Streams 7: Open, use, close, handle errors

A simple OutputStream example

With error handling
= public static void main(String[] args) {
try {

OutputStream os = new FileOutputStream('info.dat");

os.write(3);
os.write(new byte[] { 6, 7, 8 });

But if this yields an exception,

we won't close the file!

os.close();
} catch (IOException e) {
... handle I/O errors that may arise when opening or using the stream...

}
}

9
jonkv@ida

Streams 8: Try-with-resources

A simple OutputStream example
Using "try-with-resources" Declare an AutoCloseable
: : : resource in try()...

= public static void main(String|[] args) {
try (OutputStream os = new FileOutputStream() {

Use it inside the block...

os.write(3);
os.write(new byte[] { 6,7, 8 }); ... and when you exit the block,

the try statement will close the
resource (file), even if there is an

exception!

// No need to close here

} catch (IOException e) {
.. handle I/O errors that may arise

when opening or using the stream...

ror‘handling is important!
AIWays ina ke sure that cvery

-

=
Alw.

A
~

IJJ]:a \..JJ_J::‘\.M

Streams 9: Example

9

jonkv@ida

Using more than one resource:

= public static void main(String|[] args) {
try (InputStream is = new FileInputStream('foo.dat");
OutputStream os = new FileOutputStream('info.dat"))

{

} catch (IOException e) {
... handle it ...
}
}

Stream Filters 1: Introduction

— Very little basic functionality... for a reason!

Division of responsibilities

“Basic”’ streams handle sources and destinations

Your code

= Only handle bytes, byte arrays

Filter streams provide additional functionality
= Add buffering
= Support other types of data I

Filter Stream

Filter Stream

I

Basic Stream

a
jonkv@ida

Stream Filters 2: How do they Work ?

A simple filter stream example:

= try (MyStream out = new MyStream(new FileOutputStream('foo.dat"))) {
out.write("Hello, World!");

}
private OutputStream out;
public MyStream(final OutputStream out) { I

this.out = out;

} MyStream

public void write(String str) { I

char([] chars = str.toCharArray();

byte[] bytes = convertToUTE8(chars); ...or any other
out.write(bytes); »destination
} stream”’

Stream Filters 3: Examples

(14 JE

SETUl output ficers

. BufferedOutputStream

try (DataOutputStream os =

. Buffe:rs I/Q: . . new DataOutputStream(
Don't write a single byte at a time... new BufferedOutputStream(
= PrintStream (System.out / err) new FileOutputStream('info.dat"))))
= print(), println() {
PRV, P | os.write(new byte[] { 6,7, 8 });
= Uses platform character encoding os.writeLong(1234567890123L);
to convert chars =» bytes os.writeFloat(2.7f);
* DataOutputStream } catch (final IOException e) {
= writeLong(), writeFloat(), handleit ...
}

= writeUTF() — writes UTF-8 format

f —‘W.

= BufferedInputStream

= Buffers I/O:
Don't read a single byte at a time...

= DatalnputStream
= readLong(), readFloat(), readUTF()

Text1/0: Readers and Writers

Readers and Writers

@
jonkv@ida

Distinct subsystem for text-based 1/O: Reader, Writer

Elements are full 16-bit Unicode characters, not 8-bit bytes

Reader
A
Fr=zzzzs== yrhzzzzz==== 1
CharArrayReader StringReader
Writer
JA
FrEsssssss yrhzzzzzsz==s 1

CharArrayWriter StringWriter

Readers and Writers 2

3
jonkv@ida

Also supports filters

Your code Your code
Unicode chars Unicode chars
Filter Writer Filter Reader
Unicode charsl Unicode chars T
Filter Writer Filter Reader
Unicode charsl Unicode chars T
char[] or StringBuffer char[] or String
| FilterWriters
= PrintWritert”™”.”©~.”~”~ = BufferedReader buffers /O |
= print(), println() methods = Also: Method for reading a line

= BufferedWriter buffers I/O

Readers and Writers 3: Stream Connections

kv@ida

jon

Most destinations only support bytes — files, sockets, ...

Use adapter classes, tell them how to convert — which character encoding?

Writer wr = new OutputStreamWriter(Reader re = new InputStreamReader(
new FileOutputStream('file.txt"), socket.getInputStream(),
“ISO Latin-1" “UTE-8”
); U
DU 0J6|S DU 0J6|S
Unicode charsl Unicode chars T
OutputStreamWriter InputStreamReader
8-bit bytes| IREe R} “37 3 3 ad 8-bit bytes | =gy 3 2d D “5”

ISO Latin-1: “a” = e4 ISO Latin-1: ¢3 a4 = “An”

\:_.ID
jonkv@ida

R/W 4:Filel/0, Platform Encoding

Shortcut for file I/O using the platform's default encoding
Not for files that should be machine-readable on multiple systems!

Your code Your code
Unicode chars Unicode chars

Filter Writer Filter Reader
Unicode charsl Unicode chars T
FileWriter FileReader

8-bit bytes 8-bit bytes
Uses platform encoding Uses platform encoding

m m

File Objects

Filefname] Objects: The File Class

jonkv@ida

File Objects (java.io.File) represent file and path names

iles!
The?' do not re.present open files! Also directory / file system operations:
= File f = new File("/"); listFiles(), mkdir(), renameTo(),
File f2 = new File(f, "etc’); find available space, total space,

File f3 = new File(f,); file system roots (C:\, D:\),
System.out.print(f3.getAbsolutePath());

if (f3.exists()) {
System.out.println();
System.out.println(+ f3.getParent());
System.out.println(+ £3.1ength());
if (f3.canRead()) System.out.println();
if (f3.canWrite()) System.out.println();
if (f3.isHidden()) System.out.println();
if (f3.delete()) System.out.println();
try (OutputStream os = new FileOutputStream(f3)) { ... };

|l File.createNewFile() is used for

atomic locking — just use a
FileOutputStream in most cases!

Object-based 1/0:
Serialization

9
wJ
jonkv@ida

Serialization 1: Intro

Serialization: Convert objects to/from sequences of bytes

ObjectinputStream

OutputStream os = Socket sock = ...;
new FileOutputStream('file.dat"); InputStream is = sock.getInputStream();
ObjectOutputStream out = ObjectInputStream in =
new ObjectOutputStream(os); new ObjectInputStream(is);
out.writeObject(gameBoard); MR List<Score> highscoreList =
out.writeObject(highscoreList); object .and. (List<Score>) in.readObject();
out.close(); everything it in.close();
' ’ refers to! ' ’
Objects T Objects
ObjectOutputStream ObjectinputStream
Bytes:All you need to
reconstruct the objects Bytes

ocketinputStream

1HeOutputStream

NJ
=
jonkv@ida

Serialization 2: Serializable Interface

The objects must implement java.io.Serializable

An interface without methods, indicating that serialization is allowed

= By accessing the byte stream you can read private fields!

= public class Pair implements Serializable {
private Object first;
private Object second;
private transient int hashCodeCache;

All field values must also be

of primitive or Serializable types!

...except transient fields, which
we assume can be reconstructed

Pair(Object first, Object second) { or are unnecessary for other reasons

this.first = first;
this.second = second;
}
}

The superclass must:

= Be Serializable, so we are allowed to save its data to the stream, or
= Have a constructor without arguments, so it can be reconstructed from scratch
Many Java classes already implement Serializable

= Strings, Collections subclasses, ...

NJ
3
jonkv@ida

Serialization 3: Writing An Object Twice

ObjectOutputStream must handle circular references

Node structure example:

= Node parent = mnew Node(null);
Node child = new Node(parent); // child points to parent
parent.addChild(node); // parent points to child

Remembers which objects were written
= First time: Write object ID + entire object representation
= Second time: Write object ID

Does not care whether the object was updated!
= List list = new ArrayList();

oos.write(list); // Writes object ID + entire list
list.add("Another element");
oos.write(list); // Writes the object ID...

To write a new copy of the object: Use reset()

= oos.reset();

[26)

Serialization 4: Class Versions

Can old saved objects be read after changing the class!’

Some changes are allowed
= Adding fields — if you read an old object, the field will be set to 0/null

= Changing public/protected/private
= A few more types of changes

Others are forbidden

= Changing the class hierarchy in certain ways

= Removing Serializable

You must have the same serial version |D
= By default this is a hash of certain features in the class — too strict!

= To allow adding new fields, declare your own version ID:
private final static long serialVersionUID = 1; // for example

= IMPORTANT! Change this if you make incompatible changes to your class!

3
~J
jonkv@ida

Serialization 5: Exceptions

Error handling was omitted

= ClassNotFoundException — received an object of a non-existing class

= InvalidClassException

= StreamCorruptedException — bad control information in the stream

= OptionalDataException — primitive data found instead of objects
= NotSerializableException = — an object was not Serializable
= [OException — the usual Input/Output related exceptions

Many more serialization features...

= http://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html

http://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html

	Input and Output in Java
	Introduction
	Streams 1: The Concept
	Streams 2: Input
	Streams 3: Sources
	Streams 4: Output
	Streams 5: Destinations
	Streams 6: Open, use and close
	Streams 7: Open, use, close, handle errors
	Streams 8: Try-with-resources
	Streams 9: Example
	Stream Filters 1: Introduction
	Stream Filters 2: How do they Work?
	Stream Filters 3: Examples
	Text I/O: Readers and Writers
	Readers and Writers
	Readers and Writers 2
	Readers and Writers 3: Stream Connections
	R/W 4: File I/O, Platform Encoding
	File Objects
	File[name] Objects: The File Class
	Object-based I/O: Serialization
	Serialization 1: Intro
	Serialization 2: Serializable Interface
	Serialization 3: Writing An Object Twice
	Serialization 4: Class Versions
	Serialization 5: Exceptions

