
Java: Types, Declarations, Operators, Control Structures, . . .
The boring but necessary basics

Jonas Kvarnström

1 Introduction

This course is intended to help you learn both a programming paradigm and a pro-
gramming language. A large part of the course concerns learning high-level and
intermediate-level concepts and connections between those concepts. But to be able
to create programs in practice you also need to know quite a few basic low-level de-
tails. Here is a reference for these details, that you can use in addition to the lecture
slides and the course book you have chosen.

This is not intended to be a self-contained introductory Java text. Instead it is in-
tended for those who take TDDD78, to be used in conjunction with the information
from the initial lectures.

Even if you have used Java before, we recommend that everyone read this text from
the beginning to the end. This should not take very long, and there are probably
some details here that you have forgotten or never learned.

2 Java without OO

This section covers several non-OO aspects of Java: Primitive datatypes, variables,
declaration and scoping, operators, expressions, control statements, and so on.

The following is a simple Java program called JavaTest, demonstrating a few state-
ments and control structures. The main() method is called when the program starts.
It must be public static void and must take one argument of type String[].

public class JavaTest {
public static void main(String[] args) {

System.out.println("Hello, world");
int i = 1;
while (i < 1024) {

System.out.println("i = " + i);
i = i * 2;

}
}

}

2.1 Primitive Datatypes

Java provides the following eight primitive datatypes. Arrays are not primitive data
types. Strings are not primitive data types and not arrays of characters.

Type Bits Values
boolean true or false

byte 8 -128 to 127

short 16 -32768 to 32767

int 32 -2147483648 to 2147483647

long 64 -9223372036854775808L to 9223372036854775807L

char 16 0 to 65535

float 32 ±3.40282347E-45f to ±3.40282347E+38f
double 64 ±4.9406564584124654E-324 to ±1.797769313486231570E+308

1

2.1.1 Integer Literals

A literal is simply an expression denoting a fixed value. Unless you specify other-
wise, integer literals are interpreted as values of type int. You can use the prefix 0x

to specify a hexadecimal value or the prefix 0 to specify an octal value. Be careful
with the 0 prefix: Adding leading zeros to make columns line up is not a good idea
(0020 == 16).

Value Resulting type
0 int
123456789012345 not allowed, will not fit in an int
123456789012345L add an ’L’ to specify a long value
(short) 125 short
(byte) 125 byte
0xCAFEBABE hexadecimal
0777 octal – be careful!
0777L octal long

2.1.2 Floating Point Literals

Unless you specify otherwise, floating point literals are interpreted as values of type
double. You can use the postfix d or D to specify explicitly that you want a double-
precision value, or you can use the postfix f or F to specify a single-precision float

value. You can also use exponential notation.

Value Resulting type
0.0 double
0.0d double
0.0D double
0.0f float
0.0F float
1.7e-12 double (value is 1.7 ∗ 10−12)
1.7e-12f float (value is 1.7 ∗ 10−12)

2.1.3 Character Literals

Character literals are usually written within single quotes. However, Java also ex-
poses the internal numeric representation to the programmer, so you can also write

a character literal numerically using its Unicode position. Characters 0 to 127 are
identical to plain ASCII.

Value Result
char c1 = ’x’; Small letter x
char c2 = 120; Small letter x (ASCII code 120)
char c3 = ’7’; The digit ’7’
char c4 = 7; The ASCII control code BEL (ctrl-G)
char c5 = ’∀’; For all (Unicode 0x2200)
char c6 = ’n’; Left normal factor semidirect product (Unicode 0x22C9)
char c7 = c1+2; Small letter z (ASCII code 122)

You can also use escape codes to represent unprintable characters:

'\b': Backspace
'\t': Tab
'\n': Newline
'\f': Form feed
'\r': Carriage return
'\'': Single quote (quote backslash quote quote)
'\\': A backslash
'\nnn': The character with octal value nnn ('\012' == '\n')

You can tell the javac compiler which encoding is used for your .java source files
using the -encoding switch. There is also a special Unicode escape sequence that
permits you to enter arbitrary Unicode characters even in plain ASCII: '\u01AB' is
Unicode character number 01AB (hexadecimal).

char snowman = '\u2603';
char tripleIntegral = '\u222d';

This processing is done before lexing and parsing, not only within string or char
literals!

public\u0020clas\u0073\u0020Myclas\u0073 \u007b ...
char newline = '\n'; // OK!
char newline = '\012'; // OK!
char newline = '\u000a'; // Error; \u000a is a real newline!
char newline = ' // Just like having an actual newline
'; // between the single quotes...

String literals are written within double quotes: "Hello, World". You can use the
same escape codes as in character literals.

2

2.2 Identifiers

Any variable, field, class, and so on must have a name. This name must be a proper
identifier, consisting of a letter or underscore (_) possibly followed by other letters,
underscores and digits. Since Java uses Unicode, a “letter” does not have to be an
English letter (a-z). A few examples:

int foo;
double bar;
void myLongMethodName() { ... }
String HELLO_WORLD;
void mittLångaMetodnamn() { ... }
double π = 3.1415926535;

2.2.1 Naming Conventions

There is a set of standard naming conventions for Java code. These conventions are
followed by the Java class libraries and by almost all code you will see in articles and
other examples. Please follow them during the course, as this will make it easier for
other Java programmers to read your code.

• Class names should be nouns. All words are capitalized, and there are no
underscores. Examples: String, Border, TextArea, InheritableThreadLocal,
URLStreamHandler.

• Interface names are capitalized like class names, but do not necessarily need to
be nouns. Many interface names are adjectives. Example: List, Serializable,
ActionListener.

• Ordinary variables, fields, and methods: All words except the first are capi-
talized, and there are no underscores. Examples: size, width, arrayLength,
addElement(), defaultFontSize.

• Constants (that is, final static fields): Only capitals, with underscores be-
tween words. Examples: PI, ACCESSIBLE_HYPERTEXT_OFFSET, WEEK_OF_YEAR.

• Packages: A package name consists of a sequence of identifiers, separated
by periods. Each identifier should consist of lower case letters. Example:
java.lang, java.util, se.liu.ida.jonkv.graphics.

See also http://java.sun.com/docs/codeconv/index.html.

2.3 Declarations and Scoping

Variables can be declared at (almost) any point within a method – not only at the
beginning of a method. Usually it is a good idea to declare them just before you need
to use them. Do not follow the C practice of declaring all variables at the beginning
of a function!

Naturally, a variable can be initialized when it is declared. The compiler complains
if you try to use an uninitialized variable.

2.3.1 Final Variables; Blank Finals

If you declare a variable final, its value cannot be changed. This is very useful for
several reasons:

• Catching programming errors – if you know a certain value will not be
changed, declaring it final ensures that you won’t change it by accident due to
a typo or similar errors.

• Documenting your intentions – if you declare a variable final, anyone reading
the code knows that when the variable is used fifty lines below, the variable
will still retain its initial value.

Declare your variables as final whenever possible!

public static void main(String[] args) {
final double j = complexMethodCall();
System.out.println("j squared is " + (j*j));
// ... lots of code ...
int i = 1;
while (i < 1024) {

System.out.println("i = " + i);
j = j * 2; // Mistake!
// Compiler will complain: j is final.

}
}

A blank final is declared final but not initialized to a specific value. Like any vari-
able, it must be assigned a value before it is used. However, it must not be initialized
twice (the compiler verifies this).

3

Consider the following example. No matter which branch we choose, j will be
initialized exactly once before use.

public static void main(String[] args) {
final double j;
if (someCondition) {

j = firstComplexMethodCall();
} else {

j = secondComplexMethodCall();
}
System.out.println("j squared is " + (j*j));

}

2.3.2 Scoping

Java uses lexical scoping, with levels defined by brackets {. . .}. As in C and C++, a
variable is visible at its own bracket level and all inner levels.

public static void main(String[] args) {
final int x = 24;
if (x == 24) {

final int y = 2 * x; // x still visible
System.out.println(x + y); // x and y visible

}
System.out.println(x); // x still visible
System.out.println(y); // COMPILE ERROR!
final double y = 3.14159 * x;
System.out.println(y); // OK, there's a y

}

Note that although fields can be hidden by scoping, variables cannot (unlike in C).
The following example is not legal Java:

public static void main(String[] args) {
final int x = 24;
if (someCondition) {

final int x = 36; // COMPILE ERROR!
System.out.println(x);

}
System.out.println(x); // 24

}

2.4 Type Conversions (Casting)

You can convert numeric values between the various numeric types.

Java has automatic promotion (also called widening or upcasting): If you provide a
value of a smaller type where a larger type is expected, no explicit cast is necessary.

double d = 12; // converted to 12.0
void print(int f);
byte b = 100;
print(b); // Byte 100 converted to int

Java requires manual demotion (also called narrowing or downcasting): If you pro-
vide a value of a larger type where a smaller type is expected, you must add an
explicit cast.

int i = 271828.18; // Not allowed
int i = (int) 271828.18; // i = 271828 (truncated)
short s = (short) i; // s = 9684 (lowest 16 bits)
float f = (float) 271828.18 // f = 271828.2 (rounded)
void print(int i);
print((int) 129.8); // Calls print(129)

However, there is a special case for integer constants. These are automatically con-
verted to byte or short, if they are guaranteed to fit in that type. For example, the
value 12 below is in fact of type int, but can be assigned to a short or byte variable.

int i = 12;
short s = 12;
byte b = 12;
byte b = 200; // Not allowed
void print(byte b);
print(12); // No cast necessary

2.4.1 Automatic Promotion in Expressions

Java has no built-in operations on byte or short values. Instead, if the operands of
a binary operator are of type byte or short, they are promoted to int values before
the computation takes place.

byte b = 50;
b = b*2; // Compiler complains
b = (byte) b*2 // OK

4

Java does have operations on int, long, float and double, but the two operands
need to be of the same type. If they are of different types, the operand of the smaller
type is automatically converted to the larger type: int→ long→ float→ double.

In the example below, 10 is of type int and 0.5 is of type double. Both values
are converted to double, so the expression is equivalent to 10.0*0.5. The result
is 5.0, which is a double. It is not possible to assign the integer variable x a double-
precision floating point value, so the compiler will complain.

int x = 10 * 0.5; // Error
int x = (int) (10 * 0.5); // OK

Despite these checks, there can of course still be overflow. As in most languges, this
is not signalled in any way.

int x1 = 131072 * 131072; // x1 == 0
long x2 = 131072 * 131072; // x2 == 0
long x3 = 131072L * 131072; // x3 == 17179869184

Note that in the three multiplication expressions above, the types of the operands
determine whether an int, long, float, or double multiplication is performed. The
type of the variable (x1, x2, x3) does not matter, so long x2 = 131072*131072 results
in a 32-bit int multiplication. The result is the 32-bit integer 0 (zero), which is then
promoted to a 64-bit long value 0L. In the last example, however, we multiply the
64-bit long 131072L with the 32-bit int 131072. This results in a 64-bit multiplication.

2.5 Operators and Expressions

2.5.1 Integer Operators

The following operations are available for integral types (including char):

Binary math a+b, a-b, a*b, a/b, a%b (remainder: 17 % 5 == 2)
Unary math +a, -a

Shift a << b (left), a >> b (signed right), a >>> b (zero extension)
If-else a ? b : c (if a is true, result is b; otherwise, c)
Relational a<b, a<=b, a==b, a>=b, a>b, a!=b (not equals)

An example: Using the if-else operator to calculate n! (n factorial), where 0! = 1 and
n! == n ∗ (n − 1)!. For example, 6! = 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1. Two ways of writing this
recursively:

public long fac(final int n) {
final long retval;
if (n == 0) retval = 1;
else retval = n * fac(n-1);
return retval;

}
public long fac(final int n) {

final long retval = (n == 0) ? 1 : (n * fac(n-1));
return retval;

}

The last version can be simplified as follows

public long fac(final int n) {
return (n == 0) ? 1 : (n * fac(n-1));

}

2.5.2 Floating Point Operators

The following operations are available for floating point types (float and double):

Binary math a+b, a-b, a*b, a/b, a%b (remainder)
Unary math +a, -a

If-else a ? b : c (if a is true, result is b; otherwise, c)
Relational a<b, a<=b, a==b, a>=b, a>b, a!=b (not equals)

2.5.3 Boolean Operators

The following operations are available for boolean expressions:

Binary logical a & b, a | b, a ∧ b (and, or, xor; always evaluate a and b)
Unary logical !a (negation)
Short-circuiting a && b, a || b (only evaluate what is needed)
Relational a == b, a != b (equals, not equals)

The short-circuiting logical operators only evaluate the second operand if this is
necessary in order to determine the final value of the expression. For example, if
a is false, a && b must be false regardless of the value of b, so b is not evaluated.
If a is true, a || b must be true regardless of the value of b, so b is not evaluated.
This is better for performance. It may also be useful in order to emulate nested or

5

sequential if statements. The following two snippets are equivalent, in that if the
user first answers “no”, he is not asked “Are you really sure?”:

if (askUser("Quit?") && askUser("Are you really sure?")) {
quit();

}

if (askUser("Quit?")) {
if (askUser("Are you really sure?")) {

quit();
}

}

The non-short-circuiting logical operators always evaluate both operands. This is
rarely necessary (you usually use the short-circuiting variations), but can be useful
in case evaluating an operand has a side effect that is required to take place. For
example, suppose that saveIfNeeded(file) saves a file if it is needed, and returns
true iff it did save a file. Then, the following two snippets are equivalent, in that the
program always attempts to save the second file even if the first file was saved.

if (saveIfNeeded("foo") | saveIfNeeded("bar")) {
statusbar.setText("Saved!");

}

boolean saved1 = saveIfNeeded("foo");
boolean saved2 = saveIfNeeded("bar");
if (saved1 || saved2) {

statusbar.setText("Saved!");
}

2.5.4 Assignment; Increment/Decrement

Java has a plain assignment operator, and one assignment version of each binary
operator. For example:

a = b;
a += b; // a = a + b;
a *= b; // a = a * b;
a >>>= 3; // a = a >>> 3;

The combined operation/assignment operators have several advantages:

• Less code to write

• The left operand is evaluated only once – compare arr[f(x)] += 12 with
arr[f(x)] = arr[f(x)] + 12, where you have to call f(x) twice

• Easier to read (although some may disagree): You see immediately that you
are incrementing a variable rather than assigning a new completely unrelated
value

An assignment is not only a statement – it can also be used as an expression which
has a value in itself: The value that is being assigned. In other words, a = 3 is an
expression which has the value 3.

int a = 7;
System.out.println(a = 3); // Prints 3

There are also specialized operators for incrementing or decrementing the value of
a variable or field. The post-increment/decrement variations are attached after the
variable, while the pre-increment/decrement variations are prefixed to the variable:

a++; // post-increment: a += 1;
b--; // post-decrement: b -= 1;
++a; // pre-increment: a += 1;
--b; // pre-decrement: b -= 1;

The pre and post variations have exactly the same effect, but when they are con-
sidered as expressions, their values are different. The pre-increment operator first
increments the variable and then returns the result, while the post-increment first
calculates the old value (which will be returned) and then increments the variable:

int a = 12, b = 12;
System.out.println(a++); // Evaluate then increment: 12
System.out.println(++b); // Increment then evaluate: 13
System.out.println(a); // 13
System.out.println(b); // 13

2.5.5 Assignment vs. Comparison

Remember the difference between = and ==: A single equals sign means assign-
ment, while a double equals sign means comparison.

int i = 100;
i = i * 2;
i = (int) Math.sqrt(4711);
if (i == 100) System.out.println("Yes");

6

As mentioned above, an assignment is not only a statement but also an expression
with a value. The value of j = 100 is 100, so you can write "i = j = 100;", or
"System.out.println(j = 100);". The value of i == 100 is true or false, so you can
write "boolean equals100 = (i == 100);", or "System.out.println(i == 100);".

2.6 Statements

Every statement ends with a semicolon, except composite statements ending in a
block:

public class JavaTest {
public static void main(String[] args) {

System.out.println("Hello, world");
int i = 1;
while (i < 1024) {

System.out.println("i = " + i);
i = i * 2;

} // No semicolon here
while (i > 12) i /= 2;

}
}

2.6.1 Conditional Statements: if, switch

There are two conditional statements: if and switch. The if statement works just
like in C and C++:

if (condition) statement;
if (condition) statement1; else statement2;
if (condition) { st1; st2; } else { st3; st4; st5; st6; }
if (x == 0 || x == 1) {

System.out.println("At most 1");
} else if (x == 2) {

System.out.println("Exactly two");
} else if (x == 3) {

System.out.println("Exactly three");
System.out.println("Exactly three again");

} else {
System.out.println("Something else");

}

Note that there is no semicolon after the condition. If you do add a semicolon, this is�

interpreted as an empty statement. In other words, if (cond); statement; means
“if cond is true, do nothing; then, unconditionally perform statement”.

The switch statement also works just like in C and C++. Remember to use break to �
end each case. Otherwise, you will fall through to the next case.

switch (x + y) {
case 0:
case 1:

System.out.println("At most 1");
break;

case 2:
System.out.println("Exactly two");
// Fall through to case 3!

case 3:
System.out.println("Two or three");
break;

default:
System.out.println("Something else");

}

2.6.2 Loops: for

A for loop takes the following form:

for (initialization; condition; update) statement;

A simple example:

// Print 0, 1, ..., 98, 99
int i;
for (i = 0; i < 100; i++) System.out.println(i);
System.out.println("After loop: " + i); // After loop: 100

Variables can be declared in the initialization part. Such variables go out of scope
after the loop – they are only valid within the loop. To declare multiple variables of
the same type, use a comma as shown below. You cannot declare multiple variables
of different types.

for (int i = 0; i < 100; i++) System.out.println(i);
for (int i = 0, j = 0; i < 12; i++, j *= 2) statement;

Note that for (...) is immediately followed by the statement. Do not add an extra �
semicolon. This is interpreted as an empty statement. The following code does
nothing twelve times and then performs statement exactly once:

7

for (int i = 0; i < 12; i++); statement;

2.6.3 Loops: while and do/while

A while loop tests the condition before entering the loop. Therefore, the loop may
be executed zero times if the condition is false from the beginning.

int i = 0;
while (i < 100) {

System.out.println(i);
i++;

}

A do/while loop tests its condition after executing one iteration. Therefore, the loop
is always executed at least once.

int i = 0;
do {

System.out.println(i);
i++;

} while (i < 100);

2.6.4 Loops: break and continue

It is possible to force the program to continue with the next iteration using the
continue statement. This can be useful in order to avoid deeply nested if state-
ments, and works for all three kinds of loops (for, while, do/while). The following
two loops are equivalent.

while (i++ < 100) {
if (!test(i)) continue;
doSomething(i);
if (!test2(i)) continue;
doSomethingElse(i);

}

while (i++ < 100) {
if (test(i)) {

doSomething(i);
if (test2(i)) {

doSomethingElse(i);
}

}
}

The break statement can be used to exit a loop prematurely (before the loop condi-
tion becomes false).

int i = 0;
while (i++ < 100) {

if (!test(i)) break; // To "After the loop"
doSomething(i);
doSomethingElse(i);

}
System.out.println("After the loop");

A loop can be labeled, and the labels can be used to specify which loop the break and
continue statements refer to.

outer:
for (int i = 0; i < 12; i++) {

inner:
for (int j = 0; j < 12; j++) {

while (thisIsTrue) {
if (condition) continue inner; // next j
else if (otherCond) break inner; // exit inner loop
else if (thirdCond) break outer; // exit outer loop
...;

}
}
// destination of "break inner"

}
// destination of "break outer"

2.6.5 Exiting a labeled block: break

You can also use break to exit a labeled block. This works like a structured form of
goto – there is no ordinary goto statement in Java.

8

myblock: {
doSomething();
if (condition) break myblock;
doSomethingElse();
for (int i = 0; i < 100; i++) {

doSomethingWith(i);
}

}
System.out.println("This is the place I jump to");

2.6.6 Returning from a method: return

A void method returns no value. As you might expect, the method returns when
there are no more statements to execute:

public static void main(String[] args) {
doSomething();
doSomethingElse();
// End of method...

}

You can also use the return statement to return "prematurely":

public static void main(String[] args) {
doSomething();
if (condition) return;
doSomethingElse();

}

A non-void method must returns a value. The final statement in such a method
must always be a return statement that specifies the return value.

public static int square(double x) {
return x * x;
// No code possible here --- we have returned!

}

2.6.7 Exception handling: try/catch/finally

A try/catch/finally statement is used for catching exceptions and ensuring that
cleanup code will always be run. This is not covered in detail in this document.

try {
doSomething();

} catch (final NullPointerException e) {
handleTheException(e);

} catch (final IllegalArgumentException e) {
handleTheException(e);

} finally {
closeAllFiles();

}

2.6.8 Comments

There are two types of comments: Everything from "//" to the end of the line, and
everything between "/*" and "*/".

/* This is a comment...
And so is this... */

public static void main(String[] args) { // Me too
double /* ugly comment */ x;
x = 3.1415926535; // pi

}

2.7 Arrays

Arrays will not be covered in detail here. However, a few facts should be mentioned.

Java arrays are objects. The array classes are named int[], String[], char[], and so
on. Like any object, an array is allocated with the new operator. Indexes are from 0

to size-1. The size is available in the length data field.

int[] myarr = new int[100]; // Allocate array of length 100
myarr[0] = 22;
...;
myarr[99] = 4711;
for (int i = 0; i < myarr.length; i++) {

System.out.println(i + ": " + myarr[i]);
}

9

2.8 Compilers and Tools; Running a Java Program

Compilers and tools will be not be covered in detail here, but a few facts will be
mentioned.

Every class is (usually) in its own .java file (you place the class JavaTest in
"JavaTest.java"). Classes are compiled using javac, and you run your programs
using the java command. You can start any Java class that has a main method.

>> cat JavaTest.java
public class JavaTest {

public static void main(String[] args) {
System.out.println("Hello, World!");

}
}
>> javac JavaTest.java
>> java JavaTest
Hello, World!

You can also provide command line arguments after the class name on the command
line. The arguments end up in the args[] array in main().

>> cat JavaTest.java
public class JavaTest {

public static void main(String[] args) {
System.out.println("Hello, world");
for (int i = 0; i < args.length; i++) {

System.out.println("Arg " + i + " is " + args[i]);
}

}
}
>> java JavaTest hello "a long argument" 12
Hello, World
Arg 0 is hello
Arg 1 is a long argument
Arg 2 is 12

3 Javadoc

Javadoc is a standardized system for documenting packages, classes, methods, and
fields. If you have used Java before, you have probably browsed the standard API
documentation on the WWW – this documentation is written in Javadoc format and
converted to HTML by the javadoc tool.

While Javadoc 1.0 was a rather simple tool that performed only some minimal pro-
cessing of its input in order to produce a set of HTML documents, the javadoc tool
has evolved along with the rest of the Java environment and its functionality has
been greatly expanded. The full functionality is covered in detail in the official doc-
umentation, which is available on the web. Here, we will provide a more simplistic
view, covering mainly the functionality that was available in Javadoc 1.0. The fol-
lowing links will be useful for those who want additional information:

• http://java.sun.com/j2se/javadoc/ is the official Javadoc home page.

• http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/javadoc.html con-
tains documentation for the javadoc tool and shows the technical details
involved in writing Javadoc documentation, including a full list of documen-
tation tags.

Also, if you intend to write Javadoc comments for an API that will be used by others,
you should definitely read the following guidelines. Bad documentation is often
worse than no documentation at all!

• http://java.sun.com/j2se/javadoc/writingdoccomments/index.html con-
tains a set of style guidelines for writing documentation comments.

• http://java.sun.com/j2se/javadoc/writingapispecs/index.html contains a
set of requirements for writing proper API documentation in sufficient de-
tail that one does not have to refer to the source code to understand what a
method really does (which is all too often the case in documentation written by
novices!).

10

3.1 Writing Javadoc Comments

Package-level documentation is written in an HTML called package.html, which
should be placed together with the source code for a specific package.

All other Javadoc documentation is written as a set of Javadoc comments in each
.java file, immediately above the class, method, or field that is being documented.
A javadoc comment is a special form of block comment which starts with slash-
star-star rather than the ordinary slash-star. The comment is written in HTML for-
mat with a number of special documentation tags. The following example shows a
Javadoc comment for a method declaration.

/**
* Compares the specified object with this map for equality. Returns
* <code>true</code> if the given object is also a map and the two Maps
* represent the same mappings. More formally, two maps <code>t1</code>
* and <code>t2</code> represent the same mappings if
* <code>t1.entrySet().equals(t2.entrySet())</code>. This ensures that the
* <code>equals</code> method works properly across different implementations
* of the <code>Map</code> interface.
*
* @param obj object to be compared for equality with this map.
* @return <code>true</code> if the specified object is equal to this map.
*/

boolean equals(Object obj);

Note the special documentation tags @param, used for documenting a method pa-
rameter, and @return, used for documenting a return value.

The following are the most commonly used tags:

• @param arg description – documents the given method parameter and what
requirements the parameter must satisfy (is it allowed to be null, and if so, what
does that mean?). Use one @param tag for each parameter.

• @return description – documents the return value of a method.

• @exception ExceptionClassName reason – specifies that a certain exception
may be thrown by the method, and documents why the exception would be
thrown. All checked exceptions should be documented, as well as any non-
checked exception that the caller might reasonably want to catch. Use one
@exception tag for each exception that may be thrown. For example:

@throws UnsupportedOperationException This map is immutable

and cannot be cleared.

• @throws ExceptionClassName reason – an alias for @exception.

• @since version – the class, method, or field has been present since the given
version.

• @deprecated explanation – indicates that this class, method, or field should
no longer be used. The first sentence should tell the user why the method was
deprecated and what to use instead. The compiler automatically warns you if
you attempt to use a deprecated class or member.

@deprecated As of JDK 1.1, replaced by

{@link #setBounds(int,int,int,int)}

• @version version – indicates the version of a class.

• @author name – indicates the author of a class or member. Use multiple @author

tags to indicate multiple authors.

• @see ... – adds a hyperlink to another part of the document or another doc-
ument. This link is placed in a “See also” section. The following formats are
allowed:

@see "text" @see package.class label @see package.class#member label

@see javasoft

• {@link name label} – creates an inline hyperlink to name labelled label. For
example:

@deprecated As of JDK 1.1, replaced by

{@link #setBounds(int,int,int,int)}

Note again that Javadoc is usually compiled into HTML. Therefore, you can use
HTML within comments, including <code> . . .</code> to use a typewriter font for
inline code examples, <I> . . .</I> for italics, numbered and unnumbered lists, and
so on. As in any HTML code, a paragraph mark <P> is required in order to begin a
new paragraph; simply adding an empty line is not enough. Also, be careful with
the special HTML characters <>&.

11

Contents

1 Introduction 1

2 Java without OO 1
2.1 Primitive Datatypes . 1

2.1.1 Integer Literals . 2
2.1.2 Floating Point Literals . 2
2.1.3 Character Literals . 2

2.2 Identifiers . 3
2.2.1 Naming Conventions . 3

2.3 Declarations and Scoping . 3
2.3.1 Final Variables; Blank Finals . 3
2.3.2 Scoping . 4

2.4 Type Conversions (Casting) . 4
2.4.1 Automatic Promotion in Expressions 4

2.5 Operators and Expressions . 5
2.5.1 Integer Operators . 5
2.5.2 Floating Point Operators . 5
2.5.3 Boolean Operators . 5
2.5.4 Assignment; Increment/Decrement 6
2.5.5 Assignment vs. Comparison 6

2.6 Statements . 7
2.6.1 Conditional Statements: if, switch 7
2.6.2 Loops: for . 7
2.6.3 Loops: while and do/while . 8
2.6.4 Loops: break and continue . 8
2.6.5 Exiting a labeled block: break 8
2.6.6 Returning from a method: return 9
2.6.7 Exception handling: try/catch/finally 9
2.6.8 Comments . 9

2.7 Arrays . 9
2.8 Compilers and Tools; Running a Java Program 10

3 Javadoc 10
3.1 Writing Javadoc Comments . 11

12

