TDDD56 Lesson 1: Lab Series Intro

Sehrish Qummar

sehrish.qummar@liu.se

Staff

• Sehrish Qummar, course/lab assistant, lessons Contact person for CPU labs sehrish.qummar@liu.se

- Ingemar Ragnemalm, lab assistant, GPU lectures Contact person for GPU labs ingemar.ragnemalm@liu.se
- Sajad Khosravi, lab assistant sajad.khosravi@liu.se

Lab Groups

- Two main groups: A and B
 - Different schedule slots.
- Subgroups of two students. Work in pairs.
- Each session will be attended by one assistant.
 - For the latter half (GPU part), Ingemar takes over supervision of group A.

Lab room

• Olympen, B house, upper floor

4

Lab Equipment

- Olympen has special lab computers for the course
 - Intel Xeon CPU W-2145
 - 8 cores, 3.70 GHz
 - 16 GiB memory
 - May be able to use other IDA systems or own equipment for development, but use Olympen machines for performance testing and demonstration.
- 16 seats for groups of 2 students = 32 students at once in room

Lab Schedule

	WebReg	Week	
CPU	Lab 1	v45	Load Balancing Les Non-Blocking Data Structures Les
	Lab 2	v46	
	Lab 3	v47	High level parallel programming \
GPU	Lab 4	v48	CUDA 1
	Lab 5	v49	CUDA 2
	Lab 6	v50	OpenCL

General Information

- Be prepared when coming to labs, use time with teachers well!
- Lab compendiums and resources (code skeletons etc.) on course webpage.
- Ask if something is unclear.
- **Demonstrate** your solutions and provide answers to any questions asked in lab material, as well as questions asked by assistant.
- No written lab reports, so demonstration is thorough!
 - Time out **15 min**
- **Both** members of a group should be actively contributing and be prepared to answer questions during demonstration.
- It is allowed to discuss among groups, but don't share solutions.
 Plagiarism is taken seriously!

Information Resource

- Lab instruction
- Source files
- TDDD56 lectures, lesson slides

Lab 1

Lab 1 - Load Balancing

- Working with threads (Pthreads) on multicore CPU
- Mandelbrot fractal image generation
- Each image pixel is an independent unit of work
 - => "Embarrassingly" parallel!
- However, all pixels are not equal amount of work
 - Load balancing becomes a problem!

$$f_c(z) = z^2 + c$$

Lab 1 - Load Balancing

- Goals for the lab:
 - Implement a solution with near-equal load
 - Try different approaches
 - Utilize properties of the domain
 - How well will your solution work in a general case?
- Three implementations need to be done:
 - LOADBALANCE=0 (Naïve approach)
 - LOADBALANCE=1
 - LOADBALANCE=2

$$f_c(z) = z^2 + c$$

Lab 1 – Load Balancing

- Test your code
 - With maximum 16 threads
 - Compare balanced and unbalanced results

Lab 2

Lab 2 Non-blocking Stack

- Working with Pthreads on multicore CPU
- Using atomic operations (CAS)
- Implementing efficient parallel data structures
- Stacks implemented as linked lists
- Non-blocking: NO LOCKS!
- Push and Pop operations with atomic instructions

Compare and Swap

- Do atomically:
 - If *pointer*!= *old pointer*: do nothing Else: swap pointer to new pointer
- Typically used only for compare + assign, no swap

```
CAS(void** pointer, void* old, void* new)
    {
      atomic {
         if(*pointer == old)
           *pointer = new;
      }
      return old;
    }
```

CAS for Stack

• Push

- Keep track of old head
- Set new elements next pointer to old head
- Atomically:
 - Compare current head with saved old head
 - If still equal, set list head to new element

```
do {
    old = head; elem.next = old;
} while(CAS(head, old, elem) != old);
```


Keep track of old head

set new elements next pointer to old head

CAS push, success

start atomic operation

CAS push, success

CAS push, success

end atomic operation

Another thread pushed X!

CAS push, failure

start atomic operation

CAS push, failure

CAS push, failure

- List elements can be re-used
 - Memory is limited, pointers can reappear => still low risk
 - Improve performance by keeping a pool of unused list elements => much greater risk of re-use!
- What if a list element is
 - popped,
 - pushed (with new content),
 - during the non-atomic part of a Pop?

thread 0 start pop

thread 1 pops A, thread 2 pops B

thread 1 pushes A

thread 0 resumes pop; enters atomic region: Compares head and old_head head old_head next_head What is the problem here? pool 2 В

A is popped, setting head to old_next (B)

elements have leaked!

Lab 2 Non-blocking Stack

- Goal for the lab:
 - Implement non-blocking unbounded stack with custom memory allocator
 - Reimplement push and pop operations
 - Use atomic operations
 - Study the ABA problem
 - Detect it or force it to occur
 - Can it be avoided?

Questions?