
TDDD56
Lesson 1: Lab Series Intro

Sehrish Qummar
sehrish.qummar@liu.se

mailto:sehrish.qummar@liu.se

Staff

• Sehrish Qummar, course/lab assistant, lessons
Contact person for CPU labs
sehrish.qummar@liu.se

• Ingemar Ragnemalm, lab assistant, GPU lectures
Contact person for GPU labs
ingemar.ragnemalm@liu.se

• Sajad Khosravi, lab assistant
sajad.khosravi@liu.se

2

mailto:sehrish.qummar@liu.se
mailto:ingemar.ragnemalm@liu.se
mailto:sajad.khosravi@liu.se

Lab Groups

• Two main groups: A and B
• Different schedule slots.

• Subgroups of two students. Work in pairs.
• Each session will be attended by one assistant.
• For the latter half (GPU part), Ingemar takes over supervision of group A.

3

Lab room
• Olympen, B house, upper floor

4
2527

Lab Equipment

• Olympen has special lab computers for the course
• Intel Xeon CPU W-2145
• 8 cores, 3.70 GHz
• 16 GiB memory
• May be able to use other IDA systems or own equipment for development,

but use Olympen machines for performance testing and demonstration.

• 16 seats for groups of 2 students = 32 students at once in room

5

Lab Schedule

WebReg Week

CPU

Lab 1 v45 Load Balancing

Lab 2 v46 Non-Blocking Data Structures

Lab 3 v47 High level parallel programming

GPU

Lab 4 v48 CUDA 1

Lab 5 v49 CUDA 2

Lab 6 v50 OpenCL

6

Lesson 1

Lesson 1

Lesson 2

General Information
• Be prepared when coming to labs, use time with teachers well!
• Lab compendiums and resources (code skeletons etc.) on course webpage.
• Ask if something is unclear.
• Demonstrate your solutions and provide answers to any questions asked in

lab material, as well as questions asked by assistant.
• No written lab reports, so demonstration is thorough!

• Time out 15 min

• Both members of a group should be actively contributing and be prepared
to answer questions during demonstration.
• It is allowed to discuss among groups, but don’t share solutions.

Plagiarism is taken seriously!
7

Information Resource

• Lab instruction
• Source files
• TDDD56 lectures, lesson slides

8

Lab 1

Lab 1 – Load Balancing

• Working with threads (Pthreads)
on multicore CPU
• Mandelbrot fractal image generation
• Each image pixel is an independent unit of

work
• => ”Embarrassingly” parallel!

• However, all pixels are not equal amount
of work
• Load balancing becomes a problem!

Lab 1: Load balancing
Parallelize the generation of the graphic representation of a
subset of Mandelbrot set.

Figure: A representation of the Mandelbrot set (black area) in the range
�2  Cre  0.6 and �1  Cim  1.

Nicolas Melot nicolas.melot (at) liu.se (LIU) TDDD56 lesson 1 November 4, 2015 3 / 40

https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.youtube.com/watch?v=NGMRB4O922I

10

https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.youtube.com/watch?v=NGMRB4O922I

Lab 1 – Load Balancing

• Goals for the lab:
• Implement a solution with near-equal load
• Try different approaches
• Utilize properties of the domain

• How well will your solution work in a general case?

• Three implementations need to be done:
• LOADBALANCE=0 (Naïve approach)
• LOADBALANCE=1
• LOADBALANCE=2

11

Lab 1: Load balancing
Parallelize the generation of the graphic representation of a
subset of Mandelbrot set.

Figure: A representation of the Mandelbrot set (black area) in the range
�2  Cre  0.6 and �1  Cim  1.

Nicolas Melot nicolas.melot (at) liu.se (LIU) TDDD56 lesson 1 November 4, 2015 3 / 40

Lab 1 – Load Balancing

• Test your code
• With maximum 16 threads
• Compare balanced and

unbalanced results

Lab 1: Load balancing
Parallelize the generation of the graphic representation of a
subset of Mandelbrot set.

Figure: A representation of the Mandelbrot set (black area) in the range
�2  Cre  0.6 and �1  Cim  1.

Nicolas Melot nicolas.melot (at) liu.se (LIU) TDDD56 lesson 1 November 4, 2015 3 / 40

12

Number of threads employed

Global computation time for unbalanced threads

Lab 2

Lab 2 Non-blocking Stack

• Working with Pthreads on multicore CPU
• Using atomic operations (CAS)
• Implementing efficient parallel data structures
• Stacks implemented as linked lists
• Non-blocking: NO LOCKS!
• Push and Pop operations with atomic instructions

14

A B C

Compare and Swap

• Do atomically:
• If pointer!= old pointer: do nothing
 Else: swap pointer to new pointer

• Typically used only for compare + assign, no swap

15

Compare-and-Swap
• Do atomically:

• If pointer != old pointer: do nothing  
Else: swap pointer to new pointer

• Typically used only for compare + assign, no swap

CAS(void** pointer, void* old, void* new) 
{ 
 atomic { 
 if(*pointer == old) 
 *pointer = new;  
 } 
 return old;  
}  

CAS for Stack

• Push
• Keep track of old head
• Set new elements next pointer to old head
• Atomically:

• Compare current head with saved old head
• If still equal, set list head to new element

16

A B C

do {
 old = head; elem.next = old;
} while(CAS(head, old, elem) != old);

CAS push

17

A

B Chead

CAS push

18

A

B Chead

old_head

Keep track of old head

CAS push

19

A

B Chead

old_head

set new elements next pointer to old head

CAS push, success

20

A

B Chead

old_head

still equal?

==

start atomic operation

CAS push, success

21

A

B Chead

old_head

still equal? YES

==

CAS push, success

22

A

B Chead

old_head

Set list head to new element

end atomic operation

CAS push

23

A

B Chead

old_head

CAS push

24

A

B Chead

old_head

X

Another thread pushed X!

CAS push, failure

25

A

B Chead

old_head

X

Still equal?

start atomic operation

==

CAS push, failure

26

A

B Chead

old_head

X

Still equal? NO

==

CAS push, failure

27

A

B Chead

old_head

X

end atomic operation

ABA problem

• List elements can be re-used
• Memory is limited, pointers can reappear => still low risk
• Improve performance by keeping a pool of unused list elements => much

greater risk of re-use!

• What if a list element is
• popped,
• pushed (with new content),
• during the non-atomic part of a Pop?

28

ABA problem

29

A B Chead

old_head
next_head

thread 0 start pop

ABA problem

30

A

B

Chead

old_head
next_head

thread 1 pops A, thread 2 pops B

pool 1

pool 2

ABA problem

31

A

B

Chead

old_head
next_head

thread 1 pushes A

pool 2

ABA problem

32

A

B

Chead

old_head
next_head

thread 0 resumes pop; enters atomic region:
Compares head and old_head

pool 2

==

What is the problem here?

ABA problem

33

B

Chead

old_head
next_head

A is popped, setting head to old_next (B)

pool 2

Stack points into pool!

A pool 0

elements have leaked!

Lab 2 Non-blocking Stack

• Goal for the lab:
• Implement non-blocking unbounded stack with custom memory allocator

• Reimplement push and pop operations
• Use atomic operations

• Study the ABA problem
• Detect it or force it to occur
• Can it be avoided?

34

Questions ?

