
Low-Level Programming in C
and Multithreaded Programming

TDDD56

Self-study material for students not familiar with
C, operating systems, or Pthreads programming

Read this before Lab 0 (Wednesday first week)

Christoph Kessler

PELAB / IDA
Linköping University

Sweden

2025

2

Why native programming languages?

(e.g. C/C++, Fortran, Rust, Ada, Assembly languages)?

 Low-level programming in system software
 Necessary for direct access to hardware devices,

e.g. in device drivers, embedded systems
 Early operating systems were implemented in assembly language

(and some low-level parts of modern OS still are).

 C is the dominating language for system programming since the 1970s.
 Also used a lot in high-performance and embedded computing
 No new microprocessor ships without a C compiler.
 Many “high-level” programming languages are compiled to C.

 Resource-aware programming
for performance-critical code and energy-efficient computing
 HPC and machine learning libraries
 Graphics
 Realtime systems, Embedded systems
 …

3

Programmer Program
Productivity Productivity

Java

 For application programming only

 Design goals:

 Programmer productivity

 Safety

 Hardware completely hidden

 Comfortable

 E.g. automatic memory
management

 Protection (to some degree)

 E.g., array bound checking

 Slow

 Time-unpredictable

Example: Java vs. C
C

 For system programming mainly

 Design goals:

 Direct control of hardware

 High performance / real-time

 Minimalistic design

 Less comfortable

 Little protection (by default)

 ”low-level”

 But also the ”greenest”
(most energy-efficient)
programming language

(similarly: Python)

4

Programming in Python&Co. is Not Sufficient
for High-Performance Computing
 Resource-aware programming and use of native programming languages

can give orders of magnitude in speedup

 Exploit multiple levels of parallelism and optimizations

OptimizationSpeedupVersion

1Python

Rewrite in a static, compiled
(“native”) progr. language

47C

Extract multi-core parallelism
(OpenMP)

366C with parallel loops

Loop tiling for data locality6,727C with loops and memory optimization

Extract SIMD parallelism62,806Loop vectorization using Intel AVX
SIMD instructions

Example:
Matrix-Multiply: relative speedup to a Python version (18 core Intel Xeon CPU)

Data source: C. Leiserson et al. “There's plenty of room at the top: What will drive computer performance
after Moore’s law?” Science 368(6495): pp. 1-7, June 2020.
Table source: J. Hennessy, D. Patterson: “A New Golden Age for Computer Architecture.”
Communications of the ACM 62(2):48-60, Feb. 2019.

5

Relative Performance and Energy Usage
with Different Programming Languages

 Based on a set of 10 benchmark applications
 Time and energy are strongly correlated here (fixed clock frequency)
 In both aspects, C outperforms Python by 2 orders of magnitude!

Source:

R. Pereira, M. Couto, F. Ribeiro, R. Rua,
J. Cunha, J. Fernandes, J. Saraiva:
”Ranking programming languages by
energy efficiency”. Science of Computer
Programming 205, 2021.
https://doi.org/10.1016/j.scico.2021.102609

6

A Short History of C

 C was developed in the early 1970’s by Dennis Ritchie at Bell Labs

 Objective: structured but flexible programming language
e.g. for writing device drivers or operating systems

 Used for implementing the Unix OS

 Book 1978 by Brian Kernighan and Dennis Ritchie (”K&R-C”)

 ”ANSI-C” 1989 standard by ANSI (”C89”)

 The C standard for many programmers (and compilers...)

 Became the basis for standard C++

 Java borrowed much of its syntax

 The GNU C compiler (gcc) implemented a superset (”GNU-C”)

 ”C99” standard by ISO, only minor changes

 ”C11” (ISO) – multithreading support added

 …

A short introduction to
system programming in C

Remark: This is not a complete language tutorial.
Instead, we focus on the C issues often perceived

as difficult by programmers used to Python or Java.

Pointer programming, Storage Classes, Memory;
Compiling, Linking, Loading

8

Overview

 Common organization of a C program

 Data and function definitions

 Pointers

 Static and automatic variables

 Dynamically allocated memory

 Linking

 Debugging (as time permits)

9

Common organization of a C program

 A C program is a collection of C source files

 Module files (extension .c)

 contain implementations of functionality (similar .java)

 Header files (.h)

 contain declarations of global variables, functions, types

 #include’d from all module files that need to see them,
using the C preprocessor (missing in Java)

 When a module file is compiled successfully,
an object code file (object module, binary module) is created
(.o, corresponds to Java .class files)

 An executable (program) is a single binary file (a.out)
built by the linker by merging all needed object code files

 There must be exactly one function called main()

10

Compiling and Linking
for Multi-Module C Programs

glob.hxy.h

mymain.c def.cabc.c

stdio.h

#include

preprocess,

#include
#include

abc.o mymain.o def.o

compile + asm

a.out (executable)

link libc.a

C run-time library is
linked with the user code

cc abc.c cc mymain.c cc def.c

header
files

module
files

Predefined system header file,
this one contains function
declarations for the I/O
functions implemented
in libc.a

11

Common organization of a C program (cont.)
Example

// a comment: header

/*comment: declaration
of globally visible
functions
and variables: */

extern int incr(int);
extern int initval;

#include ”glob.h”

// definition of var. initval:
int initval = 17;

// definition of func. incr:
int incr(int k)
{

return k+1;
}

#include <stdio.h>
#include ”glob.h”

int counter; // locally def.

void main(void)
{

counter = initval;
printf(“result: %d”,

incr(counter)
);

}

glob.h abc.c mymain.c

Note the difference:

Declarations announce
signatures (names+types).

Definitions declare (if
not already done) AND
allocate memory.

Header files should never
contain definitions!

Side note for Python programmers:
In C, the code formatting (indentation, whitespace,
linebreaks etc.) does (almost) not matter at all for
the compiler. But it can help the human reader …

12

Data types in C

 All data objects in a C program must be statically typed
 Declared by programmer or inferred by compiler (using rules)

 Primitive types
 integral types: char, short, int, long; enum

 can be signed or unsigned, e.g. unsigned int counter;
 sizes are implementation dependent (compiler/platform),

use sizeof(datatype) operator to write portable code

 floatingpoint types: float, double, long double
 pointers

 Composite data types
 arrays
 structs
 unions

 Programmer can also define new type names with typedef

13

Constants and Enumerations

 Constant variables:

 const int red = 2;

 const int blue = 4;

 const int green = 5;

 const int yellow = 6;

 Enumerations:

 enum { red = 2, blue = 4, green, yellow } color;
color = green; // expanded by compiler into: color = 5;

 With the preprocessor:

 symbolic names, textually expanded before compilation

 #define red 2

 ... (no =, no semicolon)

 Stylistic issue: In C, constants are often capitalized: RED, BLUE, ...

14

struct My_IComplex {

int re, im;

};

struct My_IComplex x; // definition of x

typedef struct My_IComplex icplx; // introduces new type name icplx

icplx y;

void main (void)

{

x.re = 2;

y.im = 3 * x.re;

printf(”x needs %d bytes, an icplx needs %d bytes\n”,
sizeof(x), sizeof (icplx));

}

// Remark: the sizeof operator is evaluated at compile time.

Composite data types (1): structs

x.re

x.im

x:
Memory

addresses

15

union My_flexible_Complex {
struct My_IComplex ic; // integer complex (re, im) – see above
float f; // floatingpoint value – overlaps with ic

} c;

c.ic.re = 1141123417;

printf(”Float value interpreted from this memory address contents is
%f\n”, c.f);
// writes 528.646057

 Unions implement variant records:
all attributes share the same storage (start at offset 0)

 Unions break type safety

 can interpret the same memory location with different types

 If handled with care, useful in low-level programming

Composite data types (2): unions

c.ic.re,
c.f

c.ic.im

c:

16

 Declaration/definition very similar to Java:
int a[20];
int b[] = { 3, 6, 8, 4, 3 };
icplx c[4];
float matrix [3] [4];

 Addressing:
Location of element a[i] starts at: (address of a) + i * elsize
where elsize is the element size in bytes

 Use:
a[3] = 1234567;
a[21] = 345; // ??, there is no array bound checking in C
c[1].re = c[2].im;

 Dynamic arrays: see later

 Arrays are just a different view of pointers

Composite data types (3): Arrays

3 6 8 4 3

17

Pointers

 Each data item of a program exists somewhere in memory

 Hence, it has a (start) memory address.

 A variable of type pointer_to_type_X may take as a value the
memory address of a variable of type X

 int a;

 int *p; // defines just the pointer p, not its contents!

 p = 0x14a236f0; // initialize p

 Dereferencing a pointer with the * operator:

 *p = 17; // writes 17 to whatever address contained in p

 The address of a variable can be obtained by the & operator:
p = &a; // now, p points to (i.e., contains) address of a

 Use the NULL pointer (which is just an alias for address 0)
to denote invalid addresses, end of lists etc.

18

Pointer arithmetics

 Integral values can be added to / subtracted from pointers:

int *q = p + 7;
// new value of q is (value of p) + 7 * sizeof(pointee-type of p)

 Arrays are simply constant pointers to their first element:

 Notation b[3] is ”syntactic sugar” for *(b + 3)

 b[0] is the same as *b

 A pointer can be subtracted from another pointer:

 unsigned int offset = q – p;

3 6 8 4 3b:

19

Pointers and structs

 struct My_IComplex { int re, im; } c, *p;
p = &c;

 p is a pointer to a struct

 p->re is shorthand for *(p + (offset of re))

 Example: as p points to c,
&(p->re) is the same as &(c.re)

 Example: elem->next = NULL;

c.re

c.im

0xafb024 0xafb024
c:p:

20

Why do we need pointers in C?

 Defining recursive data structures (lists, trees ...) – as in Java

 Argument passing to functions

 simulates reference parameters – missing in C (not C++)

 void foo (int *p) { *p = 17; }
Example call: foo (&i);

 Arrays are pointers

 Handle to access dynamically allocated arrays

 A 2D array is an array of pointers to arrays:

 int m[3][4]; // m[2] is a pointer to start of third row of m

 hence, m is a pointer to a pointer to an int

 For representing strings – missing in C as basic data type

 char *s=”hello”; // s points to char-array {’h’,’e’,’l’,’l’,’o’, 0 }

 For dirty hacks (low-level manipulation of data)

21

Pointer type casting

 Pointer types can be casted to other pointer types

 int i = 1147114711;
int *pi = &i;
printf(”%f\n”, *((float *)pi)); // prints 894.325623

 All pointers have the same size (1 address word)

 But no conversion of the pointed data! (cf. unions)

 Compare this to: printf(”%f\n”, (float) i);

 A source of type unsafety,
but often needed in low-level programming

 Generic pointer type: void *

 Pointee type is undefined

 Always requires a pointer type cast before dereferencing

22

Pointers to functions (1)

 Function declaration

 extern int f(float);

 Function call: f(x)

 f is actually a (constant) pointer
to the first instruction of function f in program memory

 Call f(x) dereferences pointer f

 push argument x;
save PC and other reg’s;
PC := f;

 Function pointer variable

 int (*pf)(float); // pf is a pointer to a function
// that takes a float and returns an int

 pf = f; // pf now contains start address of f

 pf(x); // or (*pf)(x) dereferencing (call): same effect as f(x)

23

Pointers to functions (2)

 Most frequent use: generic functions

Example: Ordinary sort routine

 void bubble_sort(int arr[], int asize)
{ int i, j;

for (i=0; i<asize-1; i++)
for (j=i+1; j<asize; j++)

if (arr[i] > arr[j])
... // interchange arr[i] and arr[j]

}

 Need to rewrite this for sorting in a different order?

 Idea: Make bubble_sort generic in the compare function

24

Pointers to functions (3)

 Most frequent use: generic functions

 Example: Generic sort routine

 void bubble_sort(int arr[], int asize,
int (*cmp)(int,int))

{ int i, j;
for (i=0; i<asize-1; i++)

for (j=i+1; j<asize; j++)
if (cmp (arr[i] , arr[j]))

... // interchange arr[i] and arr[j]
}

 int gt (int a, int b) {
if (a > b) return 1;
else return 0;

}

 bubble_sort (somearray, 100, gt);
bubble_sort (otherarray, 200, lt);

25

Storage classes in C (1)

 Automatic variables
 Local variables and formal parameters of a function
 Exist once per call
 Visible only within that function (and function call)
 Space allocated automatically on the function’s stack frame
 Live only as long as the function executes

int *foo(void) // function returning a pointer to an int.
{

int t = 3; // local variable
return &t; // ?? t is deallocated on return from foo,
// so its address should not make sense to the caller...

}

26

Storage classes in C (2)

 Global variables

 Declared and defined outside any function

 Unless made globally visible by an extern declaration,
visible only within this module (file scope)

 int x; // at top level – outside any function

 extern int y; // y seen from all modules; only declaration

 int y = 9; // only 1 definition of y for all modules seeing y

 Space allocated automatically when the program is loaded

 Static variables

 static int counter;

 Allocated once for this module (i.e., not on the stack)
even if declared within a function!

 Value will survive function return: next call sees it

27

Dynamic allocation of memory in C

 malloc(N)

 allocates a block of N bytes on the heap

 and returns a generic (void *) pointer to it;

 this pointer can be type-casted to the expected pointer type

 Example:
icplx *p = (icplx *) malloc(sizeof(icplx));

 free(p)

 deallocates heap memory block pointed to by p

 Can be used e.g. for simulating dynamic arrays:

 Recall: arrays are pointers

 int *a = (int *) malloc(k * sizeof(int));
a[3] = 17;

29

Measuring Time

Using C standard library functions declared in system header file
<time.h>:

#include <time.h>

Important functions:

int clock_getres(clockid_t clockid, struct timespec *res);

int clock_gettime(clockid_t clockid, struct timespec *tp);

int clock_settime(clockid_t clockid, const struct timespec *tp);

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

};

30

Measuring Time
Example

#include <time.h>
…
clockid_t clk = CLOCK_REALTIME;
struct timespec *time1, *time2;
time1 = (struct timespec *)malloc(sizeof(struct timespec));
time2 = (struct timespec *)malloc(sizeof(struct timespec));
…
clock_gettime(clk, time1);

… // computation to be timed
clock_gettime(clk, time2);
printf("time [s]: %f \n",

(float)(time2->tv_sec - time1->tv_sec)
+ (float)(time2->tv_nsec - time1->tv_nsec) / 1000000000.0);

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

};

Why are these two lines
important?

31

See any good textbook / tutorial on C programming about:

 Type conversions and casting

 Bit-level operations

 Operator precedence order

 Variadic functions
(with a variable number of arguments, e.g. printf())

 C standard library

 C preprocessor macros

 I/O in C

 ...

Now: Compiling, Linking, Loading, Debugging

C: There is much more to say...

32

Compiling and Linking
for Multi-Module C Programs

glob.hxy.h

mymain.c def.cabc.c

stdio.h

#include

preprocess,

#include
#include

abc.o mymain.o def.o

compile + asm

a.out (executable)

link libc.a

C run-time library is
linked with the user code

cc abc.c cc mymain.c cc def.c

header
files

module
files

33

Compiling C Programs

 Examples: GNU C Compiler gcc (open source),
LLVM C compiler (open source), …

 One command calls preprocessor, compiler, assembler, linker

 Single module: Compile and link (build executable):

 gcc mymain.c executable: a.out

 gcc –o myprog mymain.c -o: rename executable

 Multiple modules: Compile separately and link then:

 gcc –c –o mymain.o mymain.c -c: compiler only

 gcc –c –o other.o other.c compiles other.c

 gcc other.o mymain.o call the linker, -> a.out

 make (e.g. GNU gmake)

 automatizes building process for several modules

How to build and execute
programs on a real computer

38

The Compilation Workflow

/* file hello.c */

#include <stdio.h>

int main()
{

printf("hello, world\n");
}

.file "hello.c"

.section .rodata.str1.1,"aMS",@progbits,1
.LC0:

.string"hello, world"

.text

.p2align 4,,15
.globl main

.type main, @function
main:

pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
subl $16, %esp
movl $.LC0, (%esp)
call puts
leave
xorl %eax, %eax
ret
.size main, .-main

39

Preprocessing Phase

C Preprocessor (cpp):
modifies the original C source program
according to directives that begin with the # character.

#include <stdio.h>
tells the preprocessor to read the contents of the system library
header file stdio.h and to insert it directly into the program text.

Output is another C source program, typically with the .i suffix.

40

Compilation Phase

Compilation Phase (cc1):
Translate the text file hello.i into the text file hello.s.
hello.s contains an assembly-language program

Each statement in an assembly-language program exactly describes
one low-level machine language instruction in a standard text form.

main:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
subl $16, %esp
movl $.LC0, (%esp)
call puts
leave
xorl %eax, %eax
ret

Assembly language
provides a common
output language for
different compilers

C
compiler

Assembly
language

Fortran
compiler

41

hello.s (in x86 assembly language)

.file "hello.c"

.section .rodata.str1.1,"aMS",@progbits,1
.LC0:

.string "hello, world"

.text

.p2align 4,,15
.globl main

.type main, @function
main:

pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl$-16, %esp
subl $16, %esp
movl $.LC0, (%esp)
call puts
leave
xorl %eax, %eax
ret
.size main, .-main
.section .note.GNU-stack,"",@progbits
.ident "GCC: (GNU) 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)"

42

Assembly Phase

Assembler (as):
translates the text-based assembly program into
machine language instructions,
packages them in a form known as a relocatable object
program, and stores the result in the object file hello.o

hello.o is a binary file (object file) whose bytes encode
machine instructions and -data rather than characters.
Binary files use a system-specific binary file format, e.g. ELF, COFF.

a4 f0 dd 07
7c 65 a6 b2
06 0f c3 dd
a2 ff bd 87
…

43

Linking Phase

Linker (ld):
merges pre-compiled object files to a single one.
The result is an executable object file that is ready to be

loaded into memory (using the OS loader)
and executed by the system.

The hello program uses the printf function, which is part of the standard C
library. This function resides in a separate precompiled object file (e.g.
printf.o or in libc.a) that has to be merged with hello.o.
Also some additional code and data (program startup code, C runtime system,
etc., in libc.a) is added by the linker.

44

Calling the entire toolchain

E.g., gcc hello.c –o hello
(here, for the GNU C compiler gcc)
calls cpp, cc1, as, ld for single-module program hello.c

For automatizing the build process of multi-module programs,
build-tools like make or IDEs like ECLIPSE are convenient.

45

unix> ./hello

hello, world

unix>

Running an Executable Program

/* hello.c */
#include <stdio.h>

int main()
{

printf("hello, world\n");
}

hello

Executable Object File
(binary)

In a Unix system, a shell is a program
which acts as a command-line interpreter:

The shell prints a prompt,
waits for the user to type in a command,
and then performs the command.

If it is not a built-in shell command, then
the shell assumes it is an executable file
and that it should load and run it.

Input

Output
Preprocess
Compile
Assemble
Link

a4 f0 dd 07
7c 65 a6 b2
06 0f c3 dd
a2 ff bd 87
…

unix>

46

Background: How the Linker Works

 Read all object modules to be linked
(including library archive modules if necessary)

 Merge the code, data, stack/heap segments of these
into a single code, data, stack/heap segment

 Resolve global symbols (e.g., global functions, variables):
check for duplicate globals, undefined globals

 Write the resulting object module,
with a new relocation table

 and mark it executable.

 Variants of static linking: (need hardware support)

 Dynamic linking (on demand at run time, as in Java)

 Shared libraries

47

Sources of information

 General intro to Programming Compiling, Loading, Executing etc.

 Y. Patt, S. Patel:
Introduction to Computing Systems: From Bits & Gates to C & Beyond.
Mc Graw Hill, 2003.

 Online reference on C and C++

 cppreference.com

 IDA courses on C and C++

 E.g. TDDD38 Advanced Programming in C++. Given every semester.

Concurrent Programming
with Processes and Threads

49

Concurrency vs. Parallelism

Concurrent
computing

Parallel
computing

Common issues:
- threads/processes for overlapping execution
- synchronization, communication
- resource contention, races, deadlocks

1 or few CPUs

Quasi-simultaneous
execution

Many CPUs

Simultaneous
execution of many
/ all threads of the
same application

Goals of concurrent execution:
- Increase CPU utilization
- Increase responsitivity of a system
- Support multiple users

Central issues: Scheduling, priorities, …

Goals of parallel execution:
- Speedup of 1 application (large problem)

Central issues: Parallel algorithms and
data structures, Mapping, Load balancing…

Processes and Threads

(quick refresher from the Operating Systems course)

51

Processes

 Processes are the fundamental units of work in a computer
 Processes are instantiations of programs

 May be started by users (or user processes) or by the operating system
 Process = program + resources

 Resources:
 A block of memory allocated by the OS to (”owned by”) the process to

accommodate its program code and data,
 Program state (current position of program counter, register values …)
 Access to CPU (usually time-shared with other processes, under the

control of the OS’ CPU scheduler)
 Open files

 Processes can execute concurrently (on same or different cores in the CPU) if
they reside in memory at the same time

 Processes are units of protection
 No process can write into another process’s memory

nor into the memory area reserved for the OS kernel data structures
 When needed, request help from the operating system (syscalls)
 Enforced by hardware mechanisms (mode bit in CPU)

52

int main()
{

Pid_t ret;
/* fork another process: */
ret = fork();
if (ret < 0) { /* error occurred */

fprintf (stderr, "Fork Failed“);
exit(-1);

}
else if (ret == 0) { /* child process */

execlp ("/bin/ls", "ls", NULL);
}
else { /*parent process: ret=childPID */

/* will wait for child to complete: */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}

Example: Process Creation in UNIX

 fork system call

 creates new child process

 exec system call

 used after a fork to replace
the process’ memory space
with a new program

 wait system call

 by parent, suspends parent
execution until child process
has terminated

C program forking
a separate process

53

Parallel programming with processes

 Processes can create new processes that execute
concurrently with the parent process

 OS scheduler – also for single-core CPUs

 Different processes share nothing by default

 Inter-process communication via OS only,
via shared memory (write/read)
or message passing (send/recv)

 Threads are a more light-weight alternative for programming
shared-memory applications

 Sharing memory (except local stack) by default

 Lower overhead for creation and scheduling/dispatch

E.g. Solaris: creation 30x, switching 5x faster

54

Inter-Process Communication Models –
Realization by OS

IPC via Message Passing IPC via Shared Memory

Syscalls: send, recv Syscalls: shmget, shmat,
then load / store

55

Example: POSIX Shared Memory API

 #include <sys/shm.h>
#include <sys/stat.h>

 Let OS create a shared memory segment (system call):
 int segment_id = shmget (IPC_PRIVATE, size, S_IRUSR | S_IWUSR);

 Attach the segment to the executing process (system call):
 void *shmemptr = shmat (segment_id, NULL, 0);

 Now access it:
 strcpy ((char *)shmemptr, ”Hello world”); // Example: copy a string into it

 …

 Detach it from executing process
when no longer accessed:
 shmdt (shmemptr);

 Let OS delete it when no longer used:
 shmctl (segment_id, IPC_RMID, NULL);

56

Single- and Multithreaded Processes

A (software) thread is a basic unit of CPU utilization:

• Thread ID, program counter, register set, stack.

A process may have one or several threads.

57

Benefits of Multithreading

 Responsiveness

 Interactive application can continue even when part of it is
blocked

 Resource Sharing

 Threads of a process share its memory by default.

 Economy

 Light-weight

 Creation, management, context switching for threads
is much faster than for processes

 Utilization of Multiprocessor Architectures

 Convenient (but low-level) shared memory programming

58

POSIX Threads (Pthreads)

 A POSIX standard (IEEE 1003.1c) API
for thread programming in C
 start and terminate threads

 coordinate threads

 regulate access to shared data structures

 API specifies behavior, not implementation,
of the thread library

 C interface, e.g.
 int pthread_create (pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine)(void*), void *arg);

 Library, relies on underlying OS and hardware!

 Common in UNIX-based operating systems
(Solaris, Linux, Mac OS X)

59

Starting a Thread (1)

 A new thread is started by calling

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*func)(void*), void *arg);

 Called func must have 1 parameter and return value of type void *

Exception: The first thread of the process is started with main()

 Threads are created and started one by one

 A thread terminates when its called function terminates
or by calling

pthread_exit (void *status)

 Threads are represented by a data structure of type pthread_t

60

Starting a Thread (2)

 Example:

#include <pthread.h>

int main (int argc, char *argv[])
{
int *ptr;
pthread_t thr;

pthread_create(&thr,
NULL,
foo,
(void*) ptr);

…
pthread_join(&thr, NULL);
return 0;

}

// for multiple arguments:

// pass a pointer to a parameter block:

void *foo (void *vp)
{

Userdefinedstructtype *ptr;
ptr=(Userdefinedstructtype*)vp;
…

}

void *foo (void *vp)
{

int i = (int) vp;;
…

}

61

Access to Shared Data (0)

 Globally defined variables
are globally shared and
visible to all threads.

 Locally defined variables
are visible to the thread
executing the function.

 But all data in shared memory
publish an address of data:
all threads could access…

 Caution: typically no protection
between thread data –
thread1 (foo1) could even write
to thread2‘s (foo2) stack frame

 Example 0: Parallel incrementing

int a[N]; // shared, assume P | N
pthread_t thr[P];

int main(void)
{

int t;
for (t=0; t<P; t++)

pthread_create(&(thr[t]), NULL,
incr, a + t*N/P);

for (t=0; t<P; t++)
pthread_join(thr[t], NULL);

…
}
void *incr (void *myptr_a)
{ int i; // thread-local variable

for (i=0; i<N/P; i++)
((int*)myptr_a[i])++; }

62

Access to Shared Data (1)

 Globally defined variables
are globally shared and
visible to all threads.

 Locally defined variables
are visible to the thread
executing the function.

 But all data in shared memory
publish an address of data:
all threads could access…

 Caution: typically no protection
between thread data –
thread1 (foo1) could even write
to thread2‘s (foo2) stack frame

 Example 1

int *globalptr = NULL; // shared ptr

void *foo1 (void *ptr1)
{

int i = 15; // thread-local variable
globalptr = &i; // ??? dangerous!

// if foo1 terminates, foo2 writes
// somewhere, unless globalptr
// value is reset to NULL manually

…
}

void *foo2 (void *ptr2)
{

if (globalptr) *globalptr = 17;
…

}

63

Access to Shared Data (2)

 Globally defined variables
are globally shared and
visible to all threads

 Locally defined variables
are visible to the thread
executing the function

 But all data in shared memory
publish an address of data:
all threads could access…

 Caution: typically no protection
between thread data –
thread1 could even write to
thread2‘s stack frame

 Example 2

int *globalptr = NULL; // shared ptr

void *foo1 (void *ptr1)
{

int i = 15;
globalptr =(int*)malloc(sizeof(int));
// safe, but possibly memory leak;
// OK if garbage collection ok

}

void *foo2 (void *ptr2)
{

if (globalptr) *globalptr = 17;
…

}

64

Coordinating Shared Access (3)

What if several threads need to write a
shared variable?

 If they simply write: ok if write order
does not play a role

 If they read and write: encapsulate
(critical section, monitor)
and protect e.g. by mutual exclusion
using mutex locks)

 Example: Access to a taskpool

 threads maintain list of tasks to be
performed

 if thread is idle, gets a task and
performs it

// each thread:
while (! workdone)
{

task = gettask(Pooldescr);
performtask (task);

}

// may be called concurrently:

Tasktype gettask (Pool p)
{

// begin critical section

task = p.queue [p.index];
p.index++;

// end critical section

return task;
}

65

Race Conditions lead to Nondeterminism

 Example: p.index++
 could be implemented in machine code as

39: register1 = p.index // load
40: register1 = register1 + 1 // add
41: p.index = register1 // store

 Consider this execution interleaving, with “index = 5” initially:
39: thread1 executes register1 = p.index { T1.register1 = 5 }
39: thread2 executes register1 = p.index { T2.register1 = 5 }
40: thread1 executes register1 = register1 + 1 { T1.register1 = 6 }
40: thread2 executes register1 = register1 + 1 { T2.register1 = 6 }
41: thread1 executes p.index = register1 { p.index = 6 }
41: thread2 executes p.index = register1 { p.index = 6 }

 Compare to a different interleaving,
e.g., 39,40,41, 39,40,41…
 Result depends on relative speed of the accessing threads

(race condition)

Not
atomic!

66

Critical Section

 Critical Section: A set of instructions, operating on
shared data or resources, that should be executed
by a single thread at a time without interruption

 Atomicity of execution

 Mutual exclusion: At most one process should
be allowed to operate inside at any time

 Consistency: inconsistent intermediate states of
shared data not visible to other processes outside

 May consist of different program parts for different threads

 that access the same shared data

 General structure, with structured control flow:
...

Entry of critical section C

… critical section C: operation on shared data

Exit of critical section C

…

67

Coordinating Shared Access (4)

pthread_mutex_t mutex; // global variable definition - shared
…

// in main:
pthread_mutex_init(&mutex, NULL);
…

// in gettask:
…
pthread_mutex_lock(&mutex);

task = p.queue [p.index];

p.index++;

pthread_mutex_unlock(&mutex);
…

Often implemented using
test_and_set or other atomic
instruction where available

68

Hardware Support for Synchronization

 Most systems provide hardware support for protecting critical sections

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

Operating systems using this are not broadly scalable

 Modern machines provide special atomic instructions

 TestAndSet: test memory word and set value atomically

Atomic = non-interruptable

 If multiple TestAndSet instructions are executed simultaneously
(each on a different CPU in a multiprocessor),
then they take effect sequentially in some arbitrary order.

 AtomicSwap: swap contents of two memory words atomically

 CompareAndSwap

 Load-linked / Store-conditional

69

TestAndSet Instruction

 Definition in pseudocode:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv; // return the OLD value

}

atomic

70

Mutual Exclusion using TestAndSet

 Shared boolean variable lock, initialized to FALSE (= unlocked)

 do {

while (TestAndSet (&lock))

; // do nothing but spinning on the lock (busy waiting)

// … critical section

lock = FALSE;

// … remainder section

} while (TRUE);

71

Pitfalls with Semaphores

 Correct use of mutex operations:

 Protect all possible entries/exits of
control flow into/from critical section:

pthread_mutex_lock (&mutex)
….

pthread_mutex_unlock (&mutex)

 Possible sources of synchronization errors:

 Omitting lock(&mutex) or unlock(&mutex) (or both) ??

 lock(&mutex) …. lock(&mutex) ??

 lock(&mutex1) …. unlock(&mutex2) ??

 if-statement in critical section, unlock in then-branch only

72

Problems: Deadlock and Starvation

 Deadlock – two or more threads are waiting
indefinitely for an event that can be caused
only by one of the waiting threads

 Typical example: Nested critical sections

Guarded by locks S and Q, initialized to unlocked

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

… …

signal (S); signal (Q);

signal (Q); signal (S);

 Starvation – indefinite blocking. A thread may never get the
chance to acquire a lock if the mutex mechanism is not fair.

time

73

Deadlock Characterization

 Mutual exclusion: only one thread at a time can use a
resource.

 Hold and wait: a thread holding at least one resource is
waiting to acquire additional resources held by other threads.

 No preemption of resources: a resource can be released
only voluntarily by the thread holding it, after that thread has
completed its task.

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting
threads such that

 P0 is waiting for a resource that is held by P1,

 P1 is waiting for a resource that is held by P2, …,

 Pn–1 is waiting for a resource that is held by Pn, and

 Pn is waiting for a resource that is held by P0.

Deadlock can arise only if four conditions hold simultaneously:

[Coffman et al. 1971]

74

Coordinating Shared Access (5)

 Must also rely on implementation for efficiency

 Time to lock / unlock mutex or synchronize threads varies
widely between different platforms

 A mutex that all threads access serializes the threads!

 Convoying

 Goal: Make critical section as short as possible

// in gettask():
int tmpindex; // local (thread-private) variable
pthread_mutex_lock(&mutex);
tmpindex = p.index++;
pthread_mutex_unlock(&mutex);
task = p.queue [tmpindex];

Possibly slow shared
memory access now
outside critical section

75

Textbook references
on thread programming (Selection)

 C. Lin, L. Snyder: Principles of Parallel Programming. Addison
Wesley, 2008. (general introduction; pthreads)

 B. Wilkinson, M. Allen: Parallel Programming, 2e. Prentice
Hall, 2005. (general introduction; pthreads, OpenMP)

 M. Herlihy, N. Shavit: The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008. (threads;
nonblocking synchronization)

