Low-Level Programming in C
and Multithreaded Programming

TDDDS56

Self-study material for students not familiar with
C, operating systems, or Pthreads programming

Read this before Lab 0 (Wednesday first week)

Christoph Kessler
PELAB / IDA

Linkoping University
Sweden

2025

II LINKOPING
® UNIVERSITY

Why native programming languages?
(e.g. C/C++, Fortran, Rust, Ada, Assembly languages)?

= Low-level programming in system software

= Necessary for direct access to hardware devices,
e.g. in device drivers, embedded systems

= Early operating systems were implemented in assembly language
(and some low-level parts of modern OS still are).

= C is the dominating language for system programming since the 1970s.
= Also used a lot in high-performance and embedded computing
= No new microprocessor ships without a C compiler.
= Many “high-level” programming languages are compiled to C.
= Resource-aware programming
for performance-critical code and energy-efficient computing
= HPC and machine learning libraries
= Graphics
- Realtime systems, Embedded systems

2

Example: Java vs. C

Java -

(similarly: Pythom

= For application programming only
= Design goals:
= Programmer productivity
= Safety
Hardware completely hidden
= Comfortable

E.g. automatic memory
management

= Protection (to some degree)
- E.g., array bound checking
= Slow

LINKOPING
II.“ UNIVERSITY

For system programming mainly
Design goals:
= Direct control of hardware
= High performance / real-time
= Minimalistic design

" Less comfortable

Little protection (by default)
"low-level”

But also the "greenest”
(most energy-efficient)
programming language

= Time-unpredictable Programmer
Productivity_

Program
Productivity

Programming in Python&Co. is Not Sufficient
for High-Performance Computing

= Resource-aware programming and use of native programming languages
can give orders of magnitude in speedup

= Exploit multiple levels of parallelism and optimizations

Example:

Matrix-Multiply: relative speedup to a Python version (18 core Intel Xeon CPU)

Version Speedup Optimization

Python 1

C C 47 Rewrite in a static, compiled

(“native”) progr. language

C with parallel loops 366 Extract multi-core parallelism
(OpenMP)

C with loops and memory optimization 6,727 Loop tiling for data locality

Loop vectorization using Intel AVX 62,806 Extract SIMD parallelism

SIMD instructions

Data source: C. Leiserson et al. “There's plenty of room at the top: What will drive computer performance
after Moore’s law?” Science 368(6495): pp. 1-7, June 2020.

Table source: J. Hennessy, D. Patterson: “A New Golden Age for Computer Architecture.”
Communications of the ACM 62(2):48-60, Feb. 2019.

LINKOPING

Relative Performance and Energy Usage s
with Different Programming Languages

Table 4
Normalized global results for Energy, Time, and Memory.
Total
Energy (]) Time (ms) Mb
(c)C 1.00 () C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 (c)C 117
{c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 {c) C++ 1.24
{c) Pascal 214 (c) Chapel 214 {c) Ada 147
{c) Chapel 218 (c) Go 2.83 {c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
{c) Ocaml 240 (c) Ocaml 3.09 (c) Haskell 245
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 {c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) G# 3.14 (c) Swift 4.20 {c) Ocaml 2.82
T {c) Go 3.23 (c) Fortran 4.20 (v) 3 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 413 (i) JavaScript 6.52 (v) Racket 3.52
{i) JavaScript 445 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 {c) Chapel 4.00
(i) TypeScript 2150 (i) Hack 26.99 (v) F# 425
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 459
(i) PHP 2930 (v) Erlang 36.71 (i) TypeScript 4.69
{v) Erlang 4223 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript 46.20 (i) Perl 6.62
\ (i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 {(v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 3.64
{i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

Source:

R. Pereira, M. Couto, F. Ribeiro, R. Rua,
J. Cunha, J. Fernandes, J. Saraiva:
"Ranking programming languages by
energy efficiency”. Science of Computer
Programming 205, 2021.

= Based on a set of 10 benchmark applications
= Time and energy are strongly correlated here (fixed clock frequency)
= |n both aspects, C outperforms Python by 2 orders of magnitude!

5

II LINKOPING
® UNIVERSITY

A Short History of C

C was developed in the early 1970’s by Dennis Ritchie at Bell Labs

= Objective: structured but flexible programming language
e.g. for writing device drivers or operating systems

= Used for implementing the Unix OS

= Book 1978 by Brian Kernighan and Dennis Ritchie ("K&R-C”)
"ANSI-C” 1989 standard by ANSI ("C897)

= The C standard for many programmers (and compilers...)

= Became the basis for standard C++

= Java borrowed much of its syntax

= The GNU C compiler (gcc) implemented a superset ("GNU-C”)
"C99” standard by ISO, only minor changes
"C11” (ISO) — multithreading support added

6

A short introduction to
system programming in C

Remark: This is not a complete language tutorial.
Instead, we focus on the C issues often perceived
as difficult by programmers used to Python or Java.

Pointer programming, Storage Classes, Memory;
Compiling, Linking, Loading

Overview

= Common organization of a C program
= Data and function definitions

= Pointers

= Static and automatic variables

= Dynamically allocated memory

= Linking

= Debugging (as time permits)

Common organization of a C program

= A C program is a collection of C source files
= Module files (extension .C)
= contain implementations of functionality (similar .java)
= Header files (.h)
= contain declarations of global variables, functions, types

= #include’d from all module files that need to see them,
using the C preprocessor (missing in Java)

= When a module file is compiled successfully,
an object code file (object module, binary module) is created
(.0, corresponds to Java .class files)

= An executable (program) is a single binary file (a.out)
built by the linker by merging all needed object code files

= There must be exactly one function called main()

9

II LINKOPING
[UNIVERSITY

Compiling and Linking | |
. Predefined system header file,
for MUItl'MOdUIQ C Programs this one contains function

declarations for the 1/O
functions implemented

in libc.a
Efeider Xy .h glob.h stdio.h
‘ #include) il
#includ
module
files abc.c mymain.c def.c
Eger;);ﬂgef Zsm cc abc.c CC mymain.c cc def.c

link

C run-time library is
linked with the user code

10

Common organization of a C program (cont)

Example

glob.h

abc.c

mymain.c

// a comment: header

/*comment: declaration
of globally visible
functions
and variables: */

extern int incr(int);
extern int initval;

Note the difference:

Declarations announce
signatures (names+types)

Definitions declare (if

not already done) AND
allocate memory.

Header files should never
contain definitions!

#include ”glob.h”

[/l definition of var. initval:

int initval = 17;
// definition of func. incr:
int incr(int k)

{
}

return k+1;

#include <stdio.h>
#include ”glob.h”

int counter; //locally def.

void main(void)

{

counter = initval;
printf(“result: %d”,
incr(counter)

)5

Side note for Python programmers:

In C, the code formatting (indentation, whitespace,
linebreaks etc.) does (almost) not matter at all for
the compiler. But it can help the human reader ...

11

LINKOPING
UNIVERSITY

LINKOPING
II.“ UNIVERSITY

Data types in C

= All data objects in a C program must be statically typed
= Declared by programmer or inferred by compiler (using rules)

= Primitive types
= Integral types: char, short, int, long; enum
= can be signed or unsigned, e.g. unsigned int counter;

= Sizes are implementation dependent (compiler/platform),
use sizeof(datatype) operator to write portable code

= floatingpoint types: float, double, long double
- pointers |

= Composite data types
= arrays
= structs
= unions

= Programmer can also define new type names with typedef
12

LINKOPING
II.“ UNIVERSITY

Constants and Enumerations

= Constant variables:

const
const
const
const

int red = 2;
int blue = 4;
int green = 5;
int yellow = 6;

= Enumerations:

= enum { red = 2, blue = 4, green, yellow } color;

color

= green; /I expanded by compiler into: color = 5;

= With the preprocessor:

= symbolic names, textually expanded before compilation
= #define red 2

(no =, no semicolon)

= Stylistic issue: In C, constants are often capitalized: RED, BLUE, ...

13

LINKOPING
II.“ UNIVERSITY

Composite data types (1): structs

struct My_IComplex ({ N Memory
int re, im; ' X.re

}s X.im H

struct My IComplex x; // definition of x addresses

typedef struct My IComplex icplx; // introduces new type name icplx
icplx y;

void main (void)
{
X.re = 2;
y.im = 3 * Xx.re;

printf(”x needs %d bytes, an icplx needs %d bytes\n”,
sizeof(x), sizeof (icplx));

// Remark: the sizeof operator is evaluated at compile time.

14

II LINKOPING
® UNIVERSITY

Composite data types (2): unions

= Unions implement variant records:
all attributes share the same storage (start at offset 0)

= Unions break type safety
= can interpret the same memory location with different types
= |f handled with care, useful in low-level programming

union My flexible Complex {
struct My IComplex ic; // integer complex (re, im) - see above
float f; // floatingpoint value - overlaps with ic

} C, C.

c.ic.re = 1141123417;

c.ic.im

printf(”Float value interpreted from this memory address contents is
%f\n”, c.f);
// writes 528.646057

15

LINKOPING
II.“ UNIVERSITY

Composite data types (3): Arrays

= Declaration/definition very similar to Java:
int a[20];

int b[] = { 3, 6, 8, 4, 3 }; 3/6|81|4]3
icplx c[4];
float matrix [3] [4];

= Addressing:

Location of element a[i] starts at: (address ofa) + i * elsize
where elsize is the element size in bytes

= Use:
a[3] = 1234567;
a[21] = 345; /[?7?, there is no array bound checking in C

c[1l].re = c[2].im;
= Dynamic arrays: see later
= Arrays are just a different view of pointers

16

Pointers

Each data item of a program exists somewhere in memory
= Hence, it has a (start) memory address.

A variable of type pointer to type X may take as a value the
memory address of a variable of type X

= int a;
= int *p; // defines just the pointer p, not its contents!
= p = 0x14a23610; //Iinitialize p
Dereferencing a pointer with the * operator:
= *p = 17; [/ writes 17 to whatever address contained in p

The address of a variable can be obtained by the & operator:
p = &; /I now, p points to (i.e., contains) address of a

Use the NULL pointer (which is just an alias for address 0)
to denote invalid addresses, end of lists etc.

17

Pointer arithmetics

= |ntegral values can be added to / subtracted from pointers:

int *q = p + 7;
// new value of g is (value of p) + 7 * sizeof(pointee-type of p)

= Arrays are simply constant pointers to their first element:
= Notation b[3] is "syntactic sugar” for *(b + 3)
- b[@] is the same as *b |

b:1 316 |8| 4|3

= A pointer can be subtracted from another pointer:

= unsigned int offset = q - p;

18

II LINKOPING
® UNIVERSITY

Pointers and structs

= struct My IComplex { int re, im; } c, *p;
p = &c;

= p Is a pointer to a struct

D: _C.

- | Oxafb024 Oxafb024| Cre

c.im

= p->re isshorthand for *(p + (offsetofre))

= Example: as p points to c,
&(p->re) isthe same as &(c.re)

= Example: elem->next = NULL;

19

houizs
Why do we need pointers in C?

= Defining recursive data structures (lists, trees ...) —as in Java
= Argument passing to functions

= simulates reference parameters — missing in C (not C++)
- void foo (int *p) { *p = 17; }
Example call: foo (&i);

= Arrays are pointers

= Handle to access dynamically allocated arrays

- A 2D array is an array of pointers to arrays:

= int m[3][4]; // m[2] is a pointer to start of third row of m
hence, m is a pointer to a pointer to an int

= For representing strings — missing in C as basic data type

= char *s="hello”; //s pointsto char-array {’h’,’e’,’I',’I',’o’, 0}
= For dirty hacks (low-level mgnipulation of data)

Pointer type casting

= Pointer types can be casted to other pointer types

= int 1 = 1147114711;
int *pi = &i;
printf(”%f\n”, *((float *)pi)); // prints 894.325623
= All pointers have the same size (1 address word)
= But no conversion of the pointed data! (cf. unions)
« Compare thisto: printf(”%f\n”, (float) i);

= A source of type unsafety,
but often needed in low-level programming

= Generic pointer type: void *
= Pointee type is undefined
= Always requires a pointer type cast before dereferencing

21

houizs
Pointers to functions (1)

= Function declaration
- extern int f(float);

= Function call: f(x)

= fis actually a (constant) pointer
to the first instruction of function f in program memory

= Call f(x) dereferences pointer f

= push argument x;
save PC and other reg’s;
PC =T
= Function pointer variable

= int (*pf)(float); // pfis a pointer to a function
// that takes a float and returns an int

- pf = f; // pf now contains start address of f
= pf(x); //lor (*pf)(x) dereferencing (call): same effect as f(x)
22

LINKOPING
II.“ UNIVERSITY

Pointers to functions (2)

= Most frequent use: generic functions

Example: Ordinary sort routine

= void bubble sort(int arr[], int asize)
{ int i, j;
for (1i=0; i<asize-1; i++)
for (j=i+l; j<asize; j++)
if (arr[i] > arr[j])
// interchange arr[i] and arr[j]

¥

= Need to rewrite this for sorting in a different order?
- |dea: Make bubble sort generic in the compare function

23

LINKOPING
II.“ UNIVERSITY

Pointers to functions (3)

= Most frequent use: generic functions

= Example: Generic sort routine

= void bubble sort(int arr[], int asize,
int (*cmp)(int,int))
{ int i, j;
for (i=0; i<asize-1; i++)
for (j=i+1; j<asize; j++)
if (cmp (arr[i] , arr[]j]))

// interchange arr[i] and arr[j]

}
= int gt (int a, int b) {
if (a > b) return 1;
else return 0;

¥

- bubble sort (somearray, 100, gt);
bubble sort (otherarhgy, 200, 1t);

II LINKOPING
® UNIVERSITY

Storage classes in C (1)

= Automatic variables
= Local variables and formal parameters of a function
= EXxist once per call
= Visible only within that function (and function call)
= Space allocated automatically on the function’s stack frame
= Live only as long as the function executes

int *foo(void) // function returning a pointer to an int.

{

int t = 3; //local variable
return &t; //?? tis deallocated on return from foo,
/] so its address should not make sense to the caller...

25

II LINKOPING
® UNIVERSITY

Storage classes in C (2)

= Global variables
= Declared and defined outside any function

= Unless made globally visible by an extern declaration,
visible only within this module (file scope)

= int Xx; // at top level — outside any function

- extern int y; //y seen from all modules; only declaration

= int y = 9; // only 1 definition of y for all modules seeing y
= Space allocated automatically when the program is loaded

= Static variables
= static int counter;

= Allocated once for this module (i.e., not on the stack)
even if declared within a function!

= Value will survive function return: next call sees it

26

Dynamic allocation of memory in C

= malloc(N)
- allocates a block of N bytes on the heap
= and returns a generic (void *) pointer to it;

= this pointer can be type-casted to the expected pointer type

= Example:
icplx *p = (icplx *) malloc(sizeof(icplx));
= free(p)

= deallocates heap memory block pointed to by p

= Can be used e.g. for simulating dynamic arrays:
= Recall: arrays are pointers

= int *a = (int *) malloc(k * sizeof(int));
a[3] = 17;

27

vz
Measuring Time

Using C standard library functions declared in system header file
<time.h>:

struct timespec {
time t tv_sec; /* seconds*/

/ long tv_nsec; /* nanoseconds */
#include <time.h §

Important functions:

int clock_gettime(clockid_t clockid, struct timespec *tp);

29

Measuring Time struct timespec {

time t tv _sec; /* seconds*/

Examp|e / long tv_nsec; /* nanoseconds */
I3
#include <time.h

clockid t clk = CLOCK_ REALTIME;

struct timespec *time1, *time2;

time1 = (struct timespec *)malloc(sizeof(struct timespec));
time2 = (struct timespec *)malloc(sizeof(struct timespec));

clock_gettime(clk, time1); Why afnthoe::ntt",‘,’o "”es]
... // computation to be timed P '
clock_gettime(clk, time2);
printf("time [s]: %f \n",
(float)(time2->tv_sec - time1->tv_sec)
+ (float)(time2->tv_nsec - time1->tv_nsec) / 1000000000.0);

30

C: There is much more to say...

See any good textbook / tutorial on C programming about:
= Type conversions and casting

= Bit-level operations

= Qperator precedence order

= Variadic functions
(with a variable number of arguments, e.g. printf())

= C standard library
= C preprocessor macros
= [/OinC

Now: Compiling, Linking, Loadjng, Debugging

Compiling and Linking
for Multi-Module C Programs

II LINKOPING
[UNIVERSITY

header)
flos Xy.h glob.h stdio.h
#include #incl
#includ
module abc . c]
files : mymain.c def.c
preprocess,

compile + asm

link

cc abc.c

CC mymain.c

32

C run-time library is
linked with the user code

Compiling C Programs

= Examples: GNU C Compiler gcc (open source),
LLVM C compiler (open source), ...

= One command calls preprocessor, compiler, assembler, linker

= Single module: Compile and link (build executable):
= gCcc mymain.c executable: a.out
= gCC —0 myprog mymain.c -0: rename executable

= Multiple modules: Compile separately and link then:

= gCC —C —0 mymain.o mymain.c -c: compiler only
= gcc —c —o other.o other.c compiles other.c
= gcc other.o mymain.o call the linker, -> a.out

= make (e.g. GNU gmake)

= automatizes building process for several modules
33

How to build and execute
programs on a real computer

The Compilation Workflow

Pre-
hel) 1lc.4
helloe.c » Processor helle.i
Source (pP) | ppodified
program source
(text) program
(text)

/* file hello.c */
#include <stdio.h>
int main()

{
printf("hello, world\n");

»

Compiler
(ccl)

LINKOPING
UNIVERSITY

rintf.o
hellc.s |Assembler| hellc.o Linker nelle
> > o B
(as) (1d)
Assembly Relocatable Executable
program object object
(text) programs program
(binary) (binary)
file "hello.c"
.section .rodata.strl.1,"aMS", @progbits, 1
.LCO:
.string"hello, world"
text
.p2align 4,,15
.globl main
.type main, @function
main:

pushl %ebp

movl %esp, %ebp
subl S8, %esp
andl S-16, %esp
subl S16, %esp
movl $.LCO, (%esp)
call puts

leave

xorl %eax, %eax
ret

LINKOPING
II.“ UNIVERSITY

Preprocessing Phase

printf.o
hellc.c Fre- Compiler | heilc.s |Assembler| hellc.o Linker hellc
processor . - ‘. s >
(cop) (ccl) (as) (1d)

Source _ Modified Assembly Relocatable Executable

program source program object object

(text) program (text) programs program

(text) (binary) (binary)

C Preprocessor (cpp):
modifies the original C source program
according to directives that begin with the # character.

#include <stdio.h>
tells the preprocessor to read the contents of the system library
header file stdio.h and to insert it directly into the program text.

Output is another C source program, typically with the .i suffix.

39

Compilation Phase

hellc.cC

>

Source

Pre-
processor

(cep)

hellc.i

program
(text)

Compilation Phase (cc1):

Modified
source
program
(text)

‘ Compiler | hellc.s

‘ (ccl)

Assembly
program
(text)

Assembler

(as)

rintf.o

»>
hellc.o

>

Relocatable
object
programs

(binary)

Linker

(1d)

LINKOPING
UNIVERSITY

nellc
4

Translate the text file hello.i into the text file hello.s.
hello.s contains an assembly-language program

Each statement in an assembly-language program exactly describes
one low-level machine language instruction in a standard text form.

C
compiler

Assembly
language

Fortran
compiler

v

Assembly language
provides a common
output language for
different compilers

main:

pushl
movl
subl
and|
subl
movl
call
leave
xorl
ret

Executable
object
program
(binary)

%ebp

%esp, %ebp
S8, %esp
S-16, %esp
$16, %esp
S.LCO, (%esp)
puts

%eax, %eax

LINKOPING
II.“ UNIVERSITY

hello.s (in x86 assembly language)

file "hello.c"

.section .rodata.strl.1,"aMS",@progbits, 1
.LCO:

.string "hello, world"

text

.p2align 4,,15
.globl main

type main, @function
main:

pushl %ebp

movl %esp, %ebp

subl S8, %esp

andlS-16, %esp

subl S16, %esp

movl S$.LCO, (%esp)

call puts

leave

xorl %eax, %eax

ret

.Sizemain, .-main

.section .note.GNU-stack,"", @progbits
ident "GCC:(GNU) 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)"

II LINKOPING
® UNIVERSITY

Assembly Phase

printf.o
_ Pre- s : . . (T .
hellec.c Drocessor helle.: | Compiler | hellc.s J|Assemblerfheilc.o Lmkgr nelle
(cop) (ccl) (1d)
Source) Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)

Assembler (as):

translates the text-based assembly program into
machine language instructions,

packages them in a form known as a relocatable object

program, and stores the result in the object file hello.o

a4 f0 dd 07
7c 65 ab b2
06 Of c3 dd

hello.o is a binary file (object file) whose bytes encode
machine instructions and -data rather than characters.
Binary files use a system-specific binary file format, e.g. ELF, COFF

42

a2 ff bd 87

Linking Phase

LINKOPING
II.“ UNIVERSITY

printf.o

Pre- e : .

hellc.c J processor helle.: | C(o;r:;il)ler hellc.s ’Assiir:)bler hellc.o L(n?lc(ic)er
Crp

Source (cop) Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program

(text) (binary) (binary)

Linker (ld):
merges pre-compiled object files to a single one.
The result is an executable object file that is ready to be
loaded into memory (using the OS loader)
and executed by the system.

The hello program uses the printf function, which is part of the standard C
library. This function resides in a separate precompiled obiject file (e.g.
printf.o or in libc.a) that has to be merged with hello.o.

Also some additional code and data (program startup code, C runtime system,

etc., in libc.a) is added by the linker.
43

II LINKOPING
® UNIVERSITY

Calling the entire toolchain

printf.o

prozgsor hello.: | Compiler [neilo.s |Assembler|: .o | Linker
(cep) (cel) (as) (1d)

hellc.cC nellc

Source Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)

E.g., gcc hello.c —o hello
(here, for the GNU C compiler gcc)
calls cpp, cc1, as, |d for single-module program hello.c

For automatizing the build process of multi-module programs,
build-tools like make or IDEs like ECLIPSE are convenient.

44

II LINKOPING
® UNIVERSITY

Running an Executable Program

/* hello.c */
#include <stdio.h>

int main()

{
printf("hello, world\n");

}

Preprocess
Compile
Assemble
Link

hello By
7¢ 65 a6 b2

06 Of c3 dd

a2 ff bd 87

Executable Object File
(binary)

In a Unix system, a shell is a program
which acts as a command-line interpreter:

The shell prints a prompt,
waits for the user to type in a command,
and then performs the command.

unix> ./hello Input
hello, world Output
unix>

If it is not a built-in shell command, then
the shell assumes it is an executable file
and that it should load and run it.

45

Background: How the Linker Works

Read all object modules to be linked
(including library archive modules if necessary)

Merge the code, data, stack/heap segments of these
Into a single code, data, stack/heap segment

Resolve global symbols (e.g., global functions, variables):
check for duplicate globals, undefined globals

Write the resulting object module,
with a new relocation table

and mark it executable.

Variants of static linking: (need hardware support)
= Dynamic linking (on demand at run time, as in Java)
= Shared libraries

46

II LINKOPING
® UNIVERSITY

Sources of information

= General intro to Programming Compiling, Loading, Executing etc.

= Y. Patt, S. Patel:
Introduction to Computing Systems: From Bits & Gates to C & Beyond.
Mc Graw Hill, 2003.

= Online reference on C and C++
= cppreference.com

= |DA courses on C and C++
- E.g. TDDD38 Advanced Programming in C++. Given every semester.

47

Concurrent Programming
with Processes and Threads

II LINKOPING
® UNIVERSITY

Concurrency vs. Parallelism

o T Bl B B
@ | | Concurrent Parallel
1 . computing computing
@ 1 or few CPUs Many CPUs
o Quasi-simultaneous \V4 ' N/ Simultaneous
.| ¥ execution execution of many
@ o / all threads of the
i 1 o same application
' o Common issues:

- threads/processes for overlapping execution
- synchronization, communication
- resource contention, races, deadlocks

Goals of concurrent execution: Goals of parallel execution:
- Increase CPU utilization - Speedup of 1 application (large problem)
- Increase responsitivity of a system

- Support multiple users Central issues: Parallel algorithms and

Central issues: Scheduling, priorities, ... data structures, Mapping, Load balancing...
49

Processes and Threads

(quick refresher from the Operating Systems course)

II LINKOPING
® UNIVERSITY

Processes

= Processes are the fundamental units of work in a computer
= Processes are instantiations of programs

May be started by users (or user processes) or by the operating system
= Process = program + resources

Resources:

= A block of memory allocated by the OS to ("owned by”) the process to
accommodate its program code and data,

= Program state (current position of program counter, register values ...)

= Access to CPU (usually time-shared with other processes, under the
control of the OS’ CPU scheduler)

= Open files

= Processes can execute concurrently (on same or different cores in the CPU) if
they reside in memory at the same time

= Processes are units of protection

No process can write into another process’s memory
nor into the memory area reserved for the OS kernel data structures

When needed, request help from the operating system (syscalls)

Enforced by hardware mechanisms (mode bit in CPU)
51

LINKOPING
II.“ UNIVERSITY

Example: Process Creation in UNIX

= fork system call

= creates new child process

= exec system call

= used after a fork to replace

the process’ memory space

with a new program

= wait system call

fork()

= by parent, suspends parent

execution until child process

has terminated

parent

77N resumes
wait

'
>

OIS C)

52

[
-

{

int main() _
C program forking
_ a separate process
Pid_t ret;
[* fork another process: */
ret = fork();

if (ret <0) { /* error occurred */
fprintf (stderr, "Fork Failed”);

exit(-1);

}

else if (ret == 0) { /* child process */
execlp ("/bin/Is", "Is", NULL);

}

else {/*parent process: ret=childPID *
/* will wait for child to complete: *
wait (NULL);
printf ("Child Complete");
exit(0);

Parallel programming with processes

= Processes can create new processes that execute
concurrently with the parent process

= OS scheduler — also for single-core CPUs
= Different processes share nothing by default

= Inter-process communication via OS only,
via shared memory (write/read)
or message passing (send/recv)

« Threads are a more light-weight alternative for programming
shared-memory applications

= Sharing memory (except local stack) by default
= Lower overhead for creation and scheduling/dispatch
» E.g. Solaris: creation 30x, switching 5x faster

53

. . hu e,
Inter-Process Communication Models —= ™

Realization by OS

process A M process A
P
shared Gt
2
process B M 1 process B g
ANRE
kernel M kernel

(a) (b)
IPC via Message Passing IPC via Shared Memory

Syscalls: send, recv Syscalls: shmget, shmat,

then load / store
54

LINKOPING
II.“ UNIVERSITY

Example: POSIX Shared Memory API

= #include <sys/shm.h>
#include <sys/stat.h>

= Let OS create a shared memory segment (system call):
= int segment_id = shmget (IPC_PRIVATE, size, S IRUSR | S_IWUSR);

= Attach the segment to the executing process (system call):
= void *shmemptr = shmat (segment_id, NULL, 0);

= Now access it:
= strepy ((char *)shmemptr, "Hello world”); // Example: copy a string into it

process A

= Detach it from executing process Fared
when no longer accessed: process B

= shmdt (shmemptr);

Lt

= Let OS delete it when no longer used:
= shmctl (segment id, IPC RMIDsNULL);

kernel

LINKOPING
II.“ UNIVERSITY

Single- and Multithreaded Processes

code

data

files

registers

stack

thread —» ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

?

:

g.(_

— thread

multithreaded process

« Thread ID, program counter, register set, stack.

56

A process may have one or several threads.

A (software) thread is a basic unit of CPU utilization:

Benefits of Multithreading

= Responsiveness

= Interactive application can continue even when part of it is
blocked

= Resource Sharing
= Threads of a process share its memory by default.
= Economy
= Light-weight
= Creation, management, context switching for threads
Is much faster than for processes
= Utilization of Multiprocessor Architectures @
= Convenient (but low-level) shared memory programming

57

POSIX Threads (Pthreads)

A POSIX standard (IEEE 1003.1c) API
for thread programming in C

= start and terminate threads
= coordinate threads
= regulate access to shared data structures

= API specifies behavior, not implementation,
of the thread library

= C interface, e.g.

= int pthread_create (pthread t *thread, const pthread attr t *attr,
void *(*start_routine)(void*), void *arg);

= Library, relies on underlying OS and hardware!

= Common in UNIX-based operating systems
(Solaris, Linux, Mac OS X)

58

II LINKOPING
® UNIVERSITY

Starting a Thread (1)

= A new thread is started by calling

int pthread_create (pthread_t *thread, const pthread_attr t *attr,
void *(*func)(void*), void *arg);

= Called func must have 1 parameter and return value of type void *
» Exception: The first thread of the process is started with main()
= Threads are created and started one by one

= A thread terminates when its called function terminates
or by calling

pthread exit (void *status)

= Threads are represented by a data structure of type pthread_t

59

II LINKOPING
® UNIVERSITY

Starting a Thread (2)

N Example: void *foo (void >I‘Vp)
{
int i = (int) vp;;
#include <pthread.h> /
}
int main (int argc, char *argv[])
{
int *ptr;
pthread_t thr; // for multiple arguments:

pthread_create(&thr // pass a pointer to a parameter block:

NULL, void *foo (void *vp)
foo, {
(void*) ptr); Userdefinedstructtype *ptr;

ptr=(Userdefinedstructtype*)vp;
pthread join(&thr, NULL);
return O; }
} 60

II LINKOPING
® UNIVERSITY

Access to Shared Data (0)

= Globally defined variables
are globally shared and
visible to all threads.

= Locally defined variables
are visible to the thread
executing the function.

Example 0: Parallel incrementing

inta[N]; //shared, assumeP | N
pthread t thr[P];

int main(void)
{
int t;
for (t=0; t<P; t++)
pthread create(&(thr[t]), NULL,
incr, a + t*N/P);
for (t=0; t<P; t++)
pthread join(thr[t], NULL);

}
void *incr (void *myptr_a)
{ inti; //thread-local variable
for (i=0; i<N/P; i++)
((int*)myptr_ali])++; }

II LINKOPING
® UNIVERSITY

Access to Shared Data (1)

= Example 1
= Globally defined variables

are globally shared and int *globalptr = NULL; //shared ptr
visible to all threads.

void *fool (void *ptrl)

= Locally defined variables {
are visible to the thread inti=15; //thread-local variable
executing the function. globalptr = &i; // ??? dangerous!

// if fool terminates, foo2 writes
// somewhere, unless globalptr

* Butall data in shared memory // value is reset to NULL manually

publish an address of data:

all threads could access... }

= Caution: typically no protection void *foo2 (void *ptr2)
between thread data — {
threadl (fool) could even write if (globalptr) *globalptr =17;

to thread2’s (foo2) stack frame

LINKOPING
II.“ UNIVERSITY

Access to Shared Data (2)

= Example 2
= Globally defined variables

are globally shared and int *globalptr = NULL; //shared ptr
visible to all threads

void *fool (void *ptrl)

= Locally defined variables { o
are visible to the thread =25 . .
executing the function globalptr =(int*)malloc(sizeof(int));

// safe, but possibly memory leak;

, // OK if garbage collection ok
= But all data in shared memory

publish an address of data:

all threads could access...)

= Caution: typically no protection void *foo2 (void *ptr2)
between thread data — {
threadl could even write to if (globalptr) *globalptr =17,

thread2‘s stack frame

II LINKOPING
® UNIVERSITY

Coordinating Shared Access (3)

What if several threads need to write a

shared variable?

If they simply write: ok if write order
does not play a role

If they read and write: encapsulate
(critical section, monitor)

and protect e.g. by mutual exclusion
using mutex locks)

Example: Access to a taskpool

= threads maintain list of tasks to be
performed

= if thread is idle, gets a task and
performs it

64

// each thread:
while (! workdone)

{
task = gettask(Pooldescr);

performtask (task);

}

// may be called concurrently:

Tasktype gettask (Pool p)
{

// begin critical section

task = p.queue [p.index |;
p.index++;

// end critical section

return task;

}

hu e,
Race Conditions lead to Nondeterminism

= Example: p.index++

= could be implemented in machine code as
39: register1 = p.index // load N L
40: register1 = register1 + 1 // add

41: p.index = register /I store

= Consider this execution interleaving, with “index = 5" initially:

39: thread1 executes register1 = p.index { T1.reqgister1 =5}
39: thread2 executes register1 = p.index { T2.reqgister1 =5}
40: thread1 executes register1 = register1 + 1 { T1.register1 =6 }
40: thread2 executes register1 = register1 + 1 { T2.register1 =6 }
41: thread1 executes p.index = register1 {p.index =6}
41: thread2 executes p.index = register1 { p.index =6}

= Compare to a different interleaving,
e.qg., 39,40,41, 39,40,41...

- Result depends on relative speed of the accessing threads
(race condition)

65

[T e
Critical Section

< .
= Critical Section: A set of instructions, operating on EEREE \
shared data or resources, that should be executed R ‘
by a single thread at a time without interruption I \ -

= Atomicity of execution | 'Y|
= Mutual exclusion: At most one process should LockeD) |

be allowed to operate inside at any time

= Consistency: inconsistent intermediate states of ‘ J,,Ji
shared data not visible to other processes outside | |

= May consist of different program parts for different threads
= that access the same shared data

= (General structure, with structured control flow:

Entry of critical section C

... critical section C: operation on shared data
Exit of critical section C

66

LINKOPING
II.“ UNIVERSITY

Coordinating Shared Access (4)

pthread _mutex t mutex; //global variable definition - shared

// in main:
pthread_mutex_init(&mutex, NULL);

//in gettask: Often implemented using
test and_set or other atomic
instruction where available

pthread _mutex_lock(&mutex);

task = p.queue [p.index];
p.index++;

pthread_mutex_unlock(&mutex);

67

LINKOPING
II.“ UNIVERSITY

Hardware Support for Synchronization

= Most systems provide hardware support for protecting critical sections

= Uniprocessors — could disable interrupts
= Currently running code would execute without preemption
= Generally too inefficient on multiprocessor systems
» Operating systems using this are not broadly scalable

= Modern machines provide special atomic instructions
= TestAndSet: test memory word and set value atomically
» Atomic = non-interruptable

» If multiple TestAndSet instructions are executed simultaneously
(each on a different CPU in a multiprocessor),
then they take effect sequentially in some arbitrary order.

- AtomicSwap: swap contents of two memory words atomically
- CompareAndSwap
- Load-linked / Store-conditional

68

TestAndSet Instruction

= Definition in pseudocode:

boolean TestAndSet (boolean *target)

{

69

Mutual Exclusion using TestAndSet

= Shared boolean variable lock, initialized to FALSE (= unlocked)
= do {
while (TestAndSet (&lock))
; // do nothing but spinning on the lock (busy wa|t|ng)

E// ... critical section

Iock FALSE;

=

/[l ... remainder section

} while (TRUE);

70

Pitfalls with Semaphores

= Correct use of mutex operations:

= Protect all possible entries/exits of
control flow into/from critical section:

pthread _mutex_lock (&mutex)

p.t.H'read_mutex_unIock (&mutex) ‘Y«

| o ;» 1
= Possible sources of synchronization errors: \é

= Omitting lock(&mutex) or unlock(&mutex) (or both) ?7?

= lock(&mutex) lock(&mutex) ??

= lock(&mutex1) unlock(&mutex2) ??

= if-statement in critical section, unlock in then-branch only

71

Problems: Deadlock and Starvation

= Deadlock — two or more threads are waiting 2
indefinitely for an event that can be caused
only by one of the waiting threads

= Typical example: Nested critical sections

» Guarded by locks S and Q, initialized to unlocked

PO P1
wait (S); wait (Q);
wait (Q); - wait (S);
signal (S); signal (Q);
time| signal (Q); signal (S);

= Starvation - indefinite blocking. A thread may never get the
chance to acquire a lock if the mutex mechanism is not fair.

72

Deadlock Characterization |[coffman etal. 1971]

Deadlock can arise only if four conditions hold simultaneously:

= Mutual exclusion: only one thread at a time can use a
resource.

= Hold and wait: a thread holding at least one resource is
waiting to acquire additional resources held by other threads.

= No preemption of resources: aresource can be released
only voluntarily by the thread holding it, after that thread has
completed its task.

= Circular wait: there exists a set {P,, P,, ..., P} of waiting
threads such that

= P, is waiting for a resource that is held by P,,

= P, is waiting for a resource that is held by P,, ...,

= P,_, is waiting for a resource that is held by P,, and
= P is waiting for a resource that is held by P,.

73

LINKOPING
II.“ UNIVERSITY

Coordinating Shared Access (5)

= Must also rely on implementation for efficiency

= Time to lock / unlock mutex or synchronize threads varies
widely between different platforms

= A mutex that all threads access serializes the threads!

= Convoying
- Goal: Make critical section as short as possible

// in gettask():
int tmpindex; //local (thread-private) variable

pthread_mutex_lock(&mutex);
tmpindex = p.index++;

pthread_mutex_unlock(&mutex); Possibly slow shared
memaory access now

task = p.queue [tmpindex];
N outside critical section

Textbook references
on thread programming (Selection)

= C. Lin, L. Snyder: Principles of Parallel Programming. Addison
Wesley, 2008. (general introduction; pthreads)

= B. Wilkinson, M. Allen: Parallel Programming, 2e. Prentice
Hall, 2005. (general introduction; pthreads, OpenMP)

= M. Herlihy, N. Shavit: The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008. (threads;
nonblocking synchronization)

75

