Page 1

Analysis of Algorithms

What to analyze

- correctness
- termination
- efficiency

Time efficiency

- growth rate
- worst case, expected case, amortized
- analysis techniques for iterative algorithms
- analysis techniques for recursive algorithms

Mathematical background

[Lewis/Denenberg 2.1, Goodrich/Tamassia 3.5]

[Lewis/Denenberg 2.2, Goodrich/Tamassia 3.6+3.7]

[Lewis/Denenberg 1.3 (except of pp. 26-32); Goodrich/Tamassia 3.3]

Correctness

"An algorithm must not give the wrong answer."

[Lewis/Denenberg]

A function *fact* for computing *factorial* must not return 6 for the call *fact*(2).

Which answers are wrong?

- the user knows that, or
- a specification of legal inputs and corresponding correct answers is needed.

An algorithm is *correct* iff for any legal input

- the computation *terminates*, and
- the answer is as specified.

Termination (1)

An algorithm should

- produce an answer in a finite number of steps
- for any legal input

Example:

Algorithm for squaring an integer using $n^2 = (n-1)^2 + 2n - 1 \ \forall n \in \mathbb{N}$

```
function Square(integer n) : integer
```

```
if n = 0 return 0
if n \neq 0 return Square(n-1) + 2 \cdot (n-1) + 1
```

does not terminate for n < 0.

[Lewis/Denenberg, Algorithm 2.1]

Termination (2)

Termination is a difficult problem:

function OddEven(integer m) : integer $n \leftarrow m$ while n > 1 do if n is even then $n \leftarrow n/2$ else $n \leftarrow 3n+1$ return m

Does this algorithm compute the identity function for all $m \ge 1$?

Efficiency

Different algorithms may solve the same problem. How to compare them?

- Resources used by an algorithm:
 - memory
 - time
- Analysis of time efficiency should be:
 - machine-independent
 - valid for all legal data
- We compare:
 - time growth-rate for growing size of (input) data (scalability)
 - mostly for worst-case problem instances

Efficiency (2)

function *TableSearch*(table < key > T[0..n-1], key K) : integer

(1) for *i* from 0 to n-1 do

- (2) **if** T[i] = K then return i
- (3) if T[i] > K then return -1

(4) return −1

What is the worst-case problem instance?

Worst case time:

 $n \cdot (t_1 + t_2 + t_3) + t_4$

Efficiency (3)

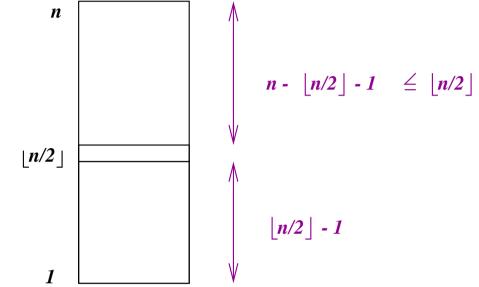
function BinSearch(table T[0..n-1], key K) : integer (0) if $n \le 0$ then return -1(1) $l \leftarrow 0$; $u \leftarrow n-1$ (2) while l < u do (3) $mid \leftarrow \lfloor (l+u)/2 \rfloor$ (4) if K = T[mid] then return mid(5) if K < T[mid] then $u \leftarrow mid - 1$ else $l \leftarrow mid + 1$ (6) if K = T[l] then return l else return -1Worst case time: $t_0 + t_1 + maxit \cdot (t_2 + t_3 + t_4 + t_5) + t_6$

where *maxit* = maximal number of iterations of the **while** loop

Efficiency (4)

How to compute *maxit* for n = 1, 2, ...?

maxit(1) = 0, maxit(2) = 1, maxit(3) = 1, maxit(4) = 2, maxit(5) = 2, maxit(6) = 2,....



 $maxit(n) = 1 + maxit(\lfloor n/2 \rfloor)$

 $maxit(n) = \lfloor \log_2 n \rfloor$

Estimating execution time for iterative programs

Elementary operation

takes / can be bound by a constant time

Sequence of operations

takes the sum of the times of its components

Loop (for... and while...)

the time of the body multiplied by number of repetitions (in the worst case)

Conditional statement (if...then...else...)

the time for evaluating and checking the condition plus maximum of the times for **then** and **else** parts.

Example: Independent Nested Loops

Matrix-vector product (here, for a quadratic matrix)

vector $\vec{x} \in \mathbb{R}^n$, matrix $A \in \mathbb{R}^{n,n}$, with n > 0given: compute: vector $\vec{y} \in \mathbb{R}^n$ with

$$\vec{y} = A \cdot \vec{x}$$
, that is, $y_i = \sum_{j=1}^n a_{ij} x_j$, $i = 1, ..., n$
procedure matvec(array $x[1..n]$, $A[1..n, 1..n]$) : array $y[1:n]$
(1) for *i* from 1 to *n* do
(2) $y[i] \leftarrow 0.0$

- (3) for *j* from 1 to *n* do
- $y[i] \leftarrow y[i] + A[i, j] * x[j]$ (4)

return y

(2)

Time: $n(t_1 + t_2) + n^2(t_3 + t_4)$

Example: Dependent Nested Loops

Prefix-Sums

given: Vector $\vec{x} \in \mathbb{N}^n$,

given: Vector $x \in \mathbb{N}$, compute: "Prefix-sums" vector $\vec{y} \in \mathbb{N}^n$ with $y_i = \sum_{j=1}^i x_j, \quad i = 1, ..., n$

A straightforward algorithm follows directly from the definition:

procedure prefixsum(array < integer > x[1..n]) : array < integer > y[1:n](1) for i from 1 to n do

- (2) $y[i] \leftarrow 0.0$
- (3) for j from 1 to i do
- (4) $y[i] \leftarrow y[i] + x[j]$

return y

Total time: $t(n) = n(t_1 + t_2) + (1 + 2 + ... + (n - 1) + n)(t_3 + t_4)$ $= n(t_1 + t_2) + \frac{n(n+1)}{2}(t_3 + t_4)$ Remark: There exists a better, linear-time algorithm!

Principles of Algorithm Analysis

An algorithm should work for (input) data of any size. (Example *TableSearch*: input size is the size of the table.)

Show the resource (time/memory) used as an *increasing function* of *input size*.

Focus on the worst case performance.

Ignore constant factors

analysis should be machine-independent; more powerful computers introduce speed-up by constant factors.

Study *scalability / asymptotic behaviour* for large problem sizes: ignore lower-order terms, focus on dominating terms.

Commonly used increasing functions

Let x, y, a, b, α be real numbers.

```
Logarithm to the base b > 0 of x > 0

y = \log_b x iff b^y = x

We consider only cases where a, b > 1.

Changing base – multiplication by a constant factor:
```

 $\log_b x = \log_b(a^{\log_a x}) = \log_a x \, \log_b a$

Power function of *x*

 x^{α} where $\alpha > 0$, such as x, $x^{1/2}$, x^2 , ...

Exponential function of x

 c^x for some c > 1

Combinations of these, e.g. $x \log_2 x$

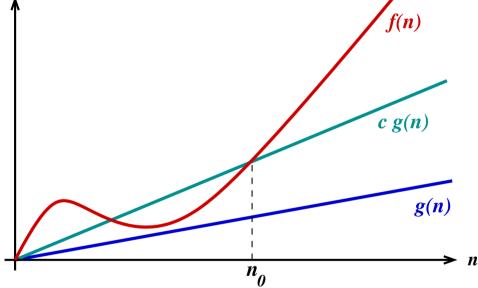
How functions grow

n	$\log_2 n$	n	$n\log_2 n$	n^2	2^n
2 16	1 4	2 16	2 64	4 256	$4 \\ 6.5 \cdot 10^4$
64	6	64	384	4096	$1.84 \cdot 10^{19}$

 $1.84 \cdot 10^{19} \mu \text{sec} = 2.14 \cdot 10^8 \text{ days} = 5845 \text{ centuries}$

Asymptotic analysis: Dominance relation

Consider two growing functions f, g from natural numbers to positive real numbers:



f dominates g iff f(n)/g(n) increases without bounds for $n \to \infty$

that is, for a given constant factor c > 0, there is some threshold value $n_0 \in \mathbb{N}$ such that $f(n) > c \cdot g(n)$ for all $n > n_0$. (Ex.: $f(n) = n^2$ dominates g(n) = 7n.)

Asymptotic analysis: Order Notation (1)

Motivation:

- + comparing growth rates of increasing functions
- + estimating efficiency of algorithms by reference to simple functions
- + abstraction from constant factors \rightarrow classes of functions

Asymptotic analysis: Order Notation (2)

f, g growing functions from natural numbers to positive real numbers

f is (in) O(g) iff there exist c > 0, $n_0 \ge 0$ such that $f(n) \le c g(n)$ for all $n > n_0$

Intuition: Apart from constant factors, f grows at most as quickly as g

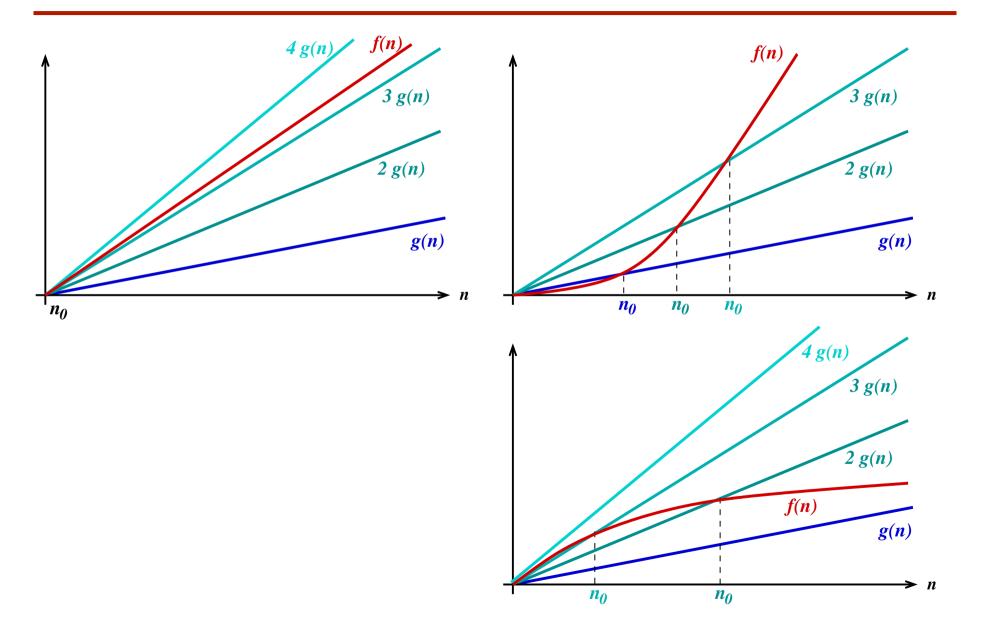
f is (in)
$$\Omega(g)$$
 iff there exist $c > 0$, $n_0 \ge 0$ such that $f(n) \ge c g(n)$ for all $n > n_0$

Intuition: Apart from constant factors, f grows at least as quickly as g $\Omega()$ is the converse of O, i.e. f is in $\Omega(g)$ iff g is in O(f)

f is (in) $\Theta(g)$ iff $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$

Intuition: Apart from constant factors, f grows exactly as quickly as g

Asymptotic analysis: Order Notation (3)



Asymptotic analysis: Examples of Order Notation

$$t_{TableSearch}(n) = n * (t_1 + t_2 + t_3) + t_4 = k_1 \cdot n + k_2$$

hence:

$$t_{TableSearch}(n) \in O(n)$$
 (Why?)
 $t_{TableSearch}(n) \in \Omega(n)$ (Why?)
 $t_{TableSearch}(n) \notin O(\log n)$ (Why?)
 $t_{TableSearch}(n) \in \Theta(n)$ (Why?)

 $t_{BinSearch}(n) = c_1 \cdot (\lfloor \log_2(n) \rfloor) + c_2$ hence:

> $t_{BinSearch}(n) \in O(\log n)$ $t_{BinSearch}(n) \in O(n)$

Asymptotic analysis: Dominance Relation Revisited

Growing functions on natural numbers: f and g

f is (in) o(g), i.e., *f* is dominated by *g* iff for any c > 0 there is an $n_0 > 0$ such that g(n) > cf(n) for all $n > n_0$ Intuition: *g* grows more quickly than *f*.

• If $f \in o(g)$ then $f \in O(g)$ but not vice versa.

Example: $n \in o(n^2)$

Asymptotic analysis: Comparing Growth Rates of Simple Functions

Some simple facts:

- $n^{\alpha} \in O(n^{\beta})$ iff $\alpha \leq \beta$ $(\alpha, \beta > 0)$ $[n^{\alpha} \in o(n^{\beta})$ iff $\alpha < \beta]$ growth rate of power function is determined by the value of power
- $\log_b n \in o(n^{\alpha})$ for any $b, \alpha > 0$ power functions grow more quickly than logarithms
- $n^{\alpha} \in o(c^n)$ for any $\alpha > 0$, c > 1exponential functions grow more quickly than power functions
- $\log_a n \in O(\log_b n)$ for any *a* and *b* growth rate of logarithms of various bases is equal
- $c^n \in O(d^n)$ iff $c \le d$, $[c^n \in o(d^n)$ iff c < d]
- Any constant function f(n) = c is in O(1)there is no difference in growth rate of constant functions

Asymptotic analysis: Checking Growth Rates

If $f \in O(g)$ and $g \in O(h)$ then $f \in O(h)$ transitivity

If $f \in O(g)$ then also $f + g \in O(g)$ growth rate depends only on fastest growing components

If
$$f \in O(f')$$
 and $g \in O(g')$ then $f \cdot g \in O(f' \cdot g')$

If there are $d, n_0 > 0$ such that $f(n) \ge d$ for all $n \ge n_0$ then $k \cdot f(n) + c \in O(f)$ for all constants k, c.

Prove or disprove

- $(n+1)^2 \in O(n^3)$
- $(n-1)^3 \in O(n^2)$
- $3^{n-1} \in O(2^n)$
- $\sqrt{n^5} \in O(n^2)$

more...

Asymptotic analysis: Comparing functions

To check $f \in O(g)$, $f \in \Omega(g)$, $f \in \Theta(g)$, analyze

$$l = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

- $f \in O(g)$ iff $l < \infty$
- $f \in \Omega(g)$ iff l > 0
- $f \in \Theta(g)$ iff $0 < l < \infty$

Analysis of Recursive Programs (1)

function fact(**integer** n) : **integer if** n = 0 **then return** 1 **else return** $n \cdot fact(n-1)$

Execution time:

Total execution time T(n)

time for comparison: t_c time for multiplication: t_m time for call and return neglected

$$T(0) = t_c$$

 $T(n) = t_c + t_m + T(n-1)$, if $n > 0$ (*T* is defined by a *recurrence relation*)

Hence for
$$n > 0$$
:

$$T(n) = (t_{c} + t_{m}) + (t_{c} + t_{m}) + T(n - 2)$$

$$= (t_{c} + t_{m}) + (t_{c} + t_{m}) + (t_{c} + t_{m}) + T(n - 3) = \dots$$

$$= \underbrace{(t_{c} + t_{m}) + \dots + (t_{c} + t_{m})}_{n \text{ times}} + t_{c}$$

$$= n \cdot (t_{c} + t_{m}) + t_{c} \in O(n)$$

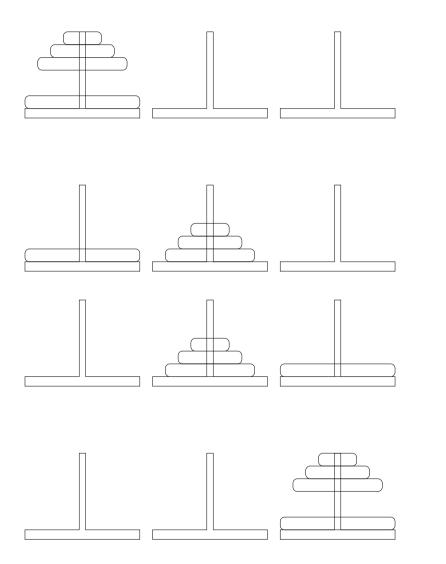
Analysis of Recursive Programs (2)

- Characterize execution time by a recurrence relation
- Find solution (closed form, non-recursive) of the recurrence relation

If not listed in a textbook, you may:

- 1. Unroll the recurrence relation a few times to get a hypothesis for a possible solution: T(n) = ...
- 2. Prove the hypothesis for T(n) by induction. If that fails, modify the hypothesis and try again ...

Towers of Hanoi



Hanoi

procedure *Hanoi*(**integer** *n*, **char** *X*,*Y*,*Z*) :

```
{ move n topmost slices from tower X to tower Z, using Y as temporary } if n = 1 then out put ("move X to Z")
```

else

```
Hanoi(n - 1, X, Z, Y)
out put ("move X to Z")
Hanoi(n - 1, Y, X, Z)
```

return

$$T(1) = t_o$$

$$T(n) = 2T(n-1) + t_o$$

$$T(n) = 4T(n-2) + 3t_o = 8T(n-3) + 7t_o = 2^n T(1) + (2^n - 1)t_o \in O(2^n)$$

Average Case Analysis (1)

Reconsider *TableSearch()*: sequential search through a table

Input argument:

one of the table elements,

assume it is chosen with equal probability for all elements.

function TableSearch(table<key> T[0..n-1], key K) : integer for *i* from 0 to n-1 do if T[i] = K then return *i*

Expected search time:

$$\frac{1+2+3+\ldots+n}{n} t_c = \frac{n(n+1)}{2n} t_c \in O(n)$$

Average Case Analysis (2)

- We have to know the probability distribution for the input data
- Gives no information about the worst cases
- Often difficult to analyze

Amortized Analysis

Done for sequences of operations and input data.

Example:

```
Given: a sorted table T[0..n-1]
```

Input: a permutation $e_1, ..., e_n$ of all elements of T

The total time for linear search of *all* elements is

$$\frac{n(n+1)}{2}t_c$$

Guaranteed!