
TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 1 C. Kessler, IDA, Linköpings Universitet, 2001.

Analysis of Algorithms

What to analyze [Lewis/Denenberg 2.1, Goodrich/Tamassia 3.5]

� correctness

� termination

� efficiency

Time efficiency [Lewis/Denenberg 2.2, Goodrich/Tamassia 3.6+3.7]

� growth rate

� worst case, expected case, amortized

� analysis techniques for iterative algorithms

� analysis techniques for recursive algorithms

Mathematical background [Lewis/Denenberg 1.3 (except of pp. 26-32); Goodrich/Tamassia 3.3]

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 2 C. Kessler, IDA, Linköpings Universitet, 2001.

Correctness

“An algorithm must not give thewrong answer.” [Lewis/Denenberg]

A function fact for computing factorial must not return 6 for the call fact(2).

Which answers are wrong?

� the user knows that, or

� a specification of legal inputs and corresponding correct answers is needed.

An algorithm is correct iff for any legal input

� the computation terminates, and

� the answer is as specified.

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 3 C. Kessler, IDA, Linköpings Universitet, 2001.

Termination (1)

An algorithm should

� produce an answer in a finite number of steps

� for any legal input

Example:

Algorithm for squaring an integer using n2

= (n�1)2

+2n�1 8n2 N

function Square(integer n) : integer

if n= 0 return 0

if n 6= 0 return Square(n�1)+2 � (n�1)+1

does not terminate for n< 0.

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 4 C. Kessler, IDA, Linköpings Universitet, 2001.

Termination (2)

Termination is a difficult problem:

function OddEven(integer m) : integer [Lewis/Denenberg, Algorithm 2.1]

n m

while n> 1 do

if n is even then

n n=2

else

n 3n+1

return m

Does this algorithm compute the identity function for all m� 1?

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 5 C. Kessler, IDA, Linköpings Universitet, 2001.

Efficiency

Different algorithms may solve the same problem.

How to compare them?

� Resources used by an algorithm:

– memory
– time

� Analysis of time efficiency should be:

– machine-independent
– valid for all legal data

�We compare:

– time growth-rate for growing size of (input) data (scalability)
– mostly for worst-caseproblem instances

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 6 C. Kessler, IDA, Linköpings Universitet, 2001.

Efficiency (2)

function TableSearch(table<key> T[0::n�1], key K) : integer

(1) for i from 0 to n�1 do

(2) if T[i] = K then return i

(3) if T[i]> K then return �1

(4) return �1

What is the worst-case problem instance?

Worst case time:

n� (t1+ t2+ t3)+ t4

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 7 C. Kessler, IDA, Linköpings Universitet, 2001.

Efficiency (3)

function BinSearch(table T[0::n�1]; key K) : integer

(0) if n� 0 then return �1

(1) l 0; u n�1

(2) while l < u do

(3) mid b(l +u)=2c

(4) if K = T[mid] then return mid

(5) if K < T[mid] then u mid�1 elsel mid+1

(6) if K = T[l] then return l else return�1

Worst case time: t0+ t1+maxit� (t2+ t3+ t4+ t5)+ t6

where maxit = maximal number of iterations of the while loop

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 8 C. Kessler, IDA, Linköpings Universitet, 2001.

Efficiency (4)

How to compute maxit for n= 1;2; :::?

maxit(1) = 0,
maxit(2) = 1,
maxit(3) = 1,
maxit(4) = 2,
maxit(5) = 2,
maxit(6) = 2;

� � �

n/2

1

n

n - n/2 - 1

n/2 - 1

n/2

maxit(n) = 1+maxit(bn=2c)

maxit(n) = blog2 nc

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 9 C. Kessler, IDA, Linköpings Universitet, 2001.

Estimating execution time for iterative programs

Elementary operation

takes / can be bound by a constant time

Sequence of operations

takes the sum of the times of its components

Loop (for... and while...)

the time of the body multiplied by number of repetitions (in the worst case)

Conditional statement (if...then...else...)

the time for evaluating and checking the condition

plus maximum of the times for then and elseparts.

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 10 C. Kessler, IDA, Linköpings Universitet, 2001.

Example: Independent Nested Loops

Matrix-vector product (here, for a quadratic matrix)

given: vector~x2 R n, matrix A2 R n;n, with n> 0

compute: vector~y2 R n with
~y= A�~x; that is, yi =

n

∑
j=1

ai j xj; i = 1; :::;n

procedure matvec(array<real> x[1::n], A[1::n;1::n]) : array<real> y[1 : n]

(1) for i from 1 to n do

(2) y[i] 0:0

(3) for j from 1 to n do

(4) y[i] y[i]+A[i; j]�x[j]

return y

Time: n(t1+ t2)+n2

(t3+ t4)

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 11 C. Kessler, IDA, Linköpings Universitet, 2001.

Example: Dependent Nested Loops

Prefix-Sums

given: Vector~x2 N n,

compute: “Prefix-sums” vector~y2 N n with yi =

i

∑
j=1

xj; i = 1; :::;n

A straightforward algorithm follows directly from the definition:

procedure pre f ixsum(array<integer> x[1::n]) : array<integer> y[1 : n]

(1) for i from 1 to n do

(2) y[i] 0:0

(3) for j from 1 to i do

(4) y[i] y[i]+x[j]

return y

Total time: t(n) = n(t1+ t2)+(1+2+ :::+(n�1)+n)(t3+ t4)

= n(t1+ t2)+

n(n+1)

2 (t3+ t4) Remark: There exists a better, linear-time algorithm!

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 12 C. Kessler, IDA, Linköpings Universitet, 2001.

Principles of Algorithm Analysis

An algorithm should work for (input) data of any size.

(Example TableSearch: input size is the size of the table.)

Show the resource (time/memory) used as

an increasing function of input size.

Focus on the worst case performance.

Ignore constant factors

analysis should be machine-independent;

more powerful computers introduce speed-up by constant factors.

Study scalability / asymptotic behaviour for large problem sizes:

ignore lower-order terms, focus on dominating terms.

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 13 C. Kessler, IDA, Linköpings Universitet, 2001.

Commonly used increasing functions

Let x;y;a;b;α be real numbers.

Logarithm to the base b> 0 of x> 0

y= logbx iff by
= x

We consider only cases where a;b> 1.

Changing base – multiplication by a constant factor:

logbx= logb(a
logax

) = logax logba

Power function of x

xα where α > 0, such as x, x1=2, x2, ...

Exponential function of x

cx for some c> 1

Combinations of these, e.g. xlog2 x

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 14 C. Kessler, IDA, Linköpings Universitet, 2001.

How functions grow

n log2 n n nlog2 n n2 2n

2 1 2 2 4 4
16 4 16 64 256 6:5 �104

64 6 64 384 4096 1:84 �1019

1:84 �1019µsec = 2:14 �108 days = 5845 centuries

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 15 C. Kessler, IDA, Linköpings Universitet, 2001.

Asymptotic analysis: Dominance relation

Consider two growing functions f , g from natural numbers to positive real
numbers:

g(n)

c g(n)

n
0

f(n)

n

f dominates g iff f (n)=g(n) increases without bounds for n! ∞
that is, for a given constant factor c> 0,

there is some threshold value n0 2 N

such that f (n)> c�g(n) for all n> n0. (Ex.: f (n) = n2 dominates g(n) = 7n.)

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 16 C. Kessler, IDA, Linköpings Universitet, 2001.

Asymptotic analysis: Order Notation (1)

Motivation:

+ comparing growth rates of increasing functions

+ estimating efficiency of algorithms by reference to simple functions

+ abstraction from constant factors! classes of functions

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 17 C. Kessler, IDA, Linköpings Universitet, 2001.

Asymptotic analysis: Order Notation (2)

f , g growing functions from natural numbers to positive real numbers

f is (in) O(g) iff there exist c> 0, n0 � 0 such that

f (n)� c g(n) for all n> n0

Intuition: Apart from constant factors, f grows at most as quickly as g

f is (in) Ω(g) iff there exist c> 0, n0 � 0 such that

f (n)� c g(n) for all n> n0

Intuition: Apart from constant factors, f grows at least as quickly as g

Ω() is the converse of O, i.e. f is in Ω(g) iff g is in O(f)

f is (in) Θ(g) iff f (n) 2O(g(n)) and g(n) 2O(f (n))
Intuition: Apart from constant factors, f grows exactly as quickly as g

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 18 C. Kessler, IDA, Linköpings Universitet, 2001.

Asymptotic analysis: Order Notation (3)

2 g(n)

n

g(n)

3 g(n)

f(n)4 g(n)

n0

2 g(n)

n

g(n)

3 g(n)

4 g(n)

f(n)

n0

2 g(n)

n n

f(n)

g(n)

3 g(n)

00nn0

n0

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 19 C. Kessler, IDA, Linköpings Universitet, 2001.

Asymptotic analysis: Examples of Order Notation

tTableSearch(n) = n� (t1+ t2+ t3)+ t4 = k1 �n+k2

hence:

tTableSearch(n) 2O(n) (Why?)

tTableSearch(n) 2Ω(n) (Why?)

tTableSearch(n) 62O(log n) (Why?)

tTableSearch(n) 2Θ(n) (Why?)

tBinSearch(n) = c1 � (blog2(n)c)+c2

hence:

tBinSearch(n) 2O(log n)

tBinSearch(n) 2O(n)

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 20 C. Kessler, IDA, Linköpings Universitet, 2001.

Asymptotic analysis: Dominance Relation Revisited

Growing functions on natural numbers: f and g

f is (in) o(g), i.e., f is dominated by g

iff for any c> 0 there is an n0 > 0 such that g(n)> c f(n) for all n> n0

Intuition: g grows more quickly than f .

� If f 2 o(g) then f 2O(g) but not vice versa.

Example: n2 o(n2

)

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 21 C. Kessler, IDA, Linköpings Universitet, 2001.

Asymptotic analysis: Comparing Growth Rates of Simple Functions

Some simple facts:

� nα

2O(nβ
) iff α� β (α;β > 0) [nα

2 o(nβ

) iff α < β]

growth rate of power function is determined by the value of power

� logbn2 o(nα

) for any b;α > 0
power functions grow more quickly than logarithms

� nα

2 o(cn

) for any α > 0, c> 1
exponential functions grow more quickly than power functions

� logan2O(logbn) for any a and b

growth rate of logarithms of various bases is equal

� cn

2O(dn

) iff c� d, [cn

2 o(dn

) iff c< d]

� Any constant function f (n) = c is in O(1)

there is no difference in growth rate of constant functions

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 22 C. Kessler, IDA, Linköpings Universitet, 2001.

Asymptotic analysis: Checking Growth Rates

If f 2O(g) and g2O(h) then f 2O(h)

transitivity

If f 2O(g) then also f +g2O(g)

growth rate depends only on fastest growing components

If f 2O(f 0) and g2O(g0) then f �g2O(f 0 �g0)

If there are d;n0 > 0 such that f (n)� d for all n� n0

then k � f (n)+c2O(f) for all constants k;c.

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 23 C. Kessler, IDA, Linköpings Universitet, 2001.

Prove or disprove
(n+1)2
2O(n3

)

(n�1)3

2O(n2
)

3n�1

2O(2n

)

p

n5

2O(n2

)

more...

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 24 C. Kessler, IDA, Linköpings Universitet, 2001.

Asymptotic analysis: Comparing functions

To check f 2O(g), f 2Ω(g), f 2Θ(g), analyze

l = lim
n!∞

f (n)

g(n)

� f 2O(g) iff l < ∞

� f 2Ω(g) iff l > 0

� f 2Θ(g) iff 0 < l < ∞

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 25 C. Kessler, IDA, Linköpings Universitet, 2001.

Analysis of Recursive Programs (1)

function f act(integer n) : integer

if n= 0 then return 1

else return n� f act(n�1)

Execution time:

Total execution time T(n)

time for comparison: tc
time for multiplication: tm
time for call and return neglected

T(0) = tc
T(n) = tc+ tm+T(n�1), if n> 0 (T is defined by a recurrence relation)

Hence for n> 0: T(n) = (tc+ tm)+(tc+ tm)+T(n�2)

= (tc+ tm)+(tc+ tm)+(tc+ tm)+T(n�3) = :::

= (tc+ tm)+ :::+(tc+ tm)

| {z }

n times
+tc

= n� (tc+ tm)+ tc 2 O(n)

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 26 C. Kessler, IDA, Linköpings Universitet, 2001.

Analysis of Recursive Programs (2)
� Characterize execution time by a recurrence relation

� Find solution (closed form, non-recursive)
of the recurrence relation

If not listed in a textbook, you may:

1. Unroll the recurrence relation a few times
to get a hypothesis for a possible solution: T(n) = :::

2. Prove the hypothesis for T(n) by induction.
If that fails, modify the hypothesis and try again ...

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 27 C. Kessler, IDA, Linköpings Universitet, 2001.

Towers of Hanoi

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 28 C. Kessler, IDA, Linköpings Universitet, 2001.

Hanoi

procedure Hanoi(integer n; char X;Y;Z) :

f move n topmost slices from tower X to tower Z, using Y as temporary g

if n= 1 then out put(“move X to Z”)

else

Hanoi(n�1;X;Z;Y)

out put(“move X to Z”)

Hanoi(n�1;Y;X;Z)

return

T(1) = to
T(n) = 2T(n�1)+ to

T(n) = 4T(n�2)+3to = 8T(n�3)+7to = 2nT(1)+(2n

�1)to2O(2n

)

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 29 C. Kessler, IDA, Linköpings Universitet, 2001.

Average Case Analysis (1)

Reconsider TableSearch(): sequential search through a table

Input argument:

one of the table elements,

assume it is chosen with equal probability for all elements.

function TableSearch(table<key> T[0::n�1], key K) : integer

for i from 0 to n�1 do

if T[i] = K then return i

Expected search time:

1+2+3+ :::+n
n

tc =

n(n+1)
2n

tc 2 O(n)

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 30 C. Kessler, IDA, Linköpings Universitet, 2001.

Average Case Analysis (2)
�We have to know the probability distribution for the input data

� Gives no information about the worst cases

� Often difficult to analyze

TDDB56 DALGOPT-D – Lecture 2: Analysis of algorithms. Page 31 C. Kessler, IDA, Linköpings Universitet, 2001.

Amortized Analysis

Done for sequences of operations and input data.

Example:

Given: a sorted table T[0::n�1]

Input: a permutation e1; :::;en of all elements of T

The total time for linear search of all elements is

n(n+1)
2

tc

Guaranteed!

