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Chapter 1

SkePU Programming and Installation

This chapter gives installation guidelines and a high-level introduction to programming with SkePUE]

1.1 Introduction

SkePU is a skeleton programming framework for multicore and multi-GPU systems with a C++11
interface. It includes data-parallel skeletons such as Map and Reduce generalized to a flexible pro-
gramming interface. SkePU emphasizes and improves on flexibility, type-safety and syntactic clarity
over its predecessor, while retaining efficient parallel algorithms and smart data movement for high-
performance and energy-efficient computation.

SkePU is structured around a source-to-source translator (precompiler) built on top of Clang
libraries, and thus requires the LLVM and Clang source when building the compiler driver.

All user-facing types and functions in the SkePU API are defined in the skepu namespace. Nested
namespaces are not part of the API and should be considered implementation-specific. The skepu: :
qualifier is implicit for all symbols in this document.

1.2 License

SkePU is distributed as open source and licensed under a modified BSD 4-clause license.
The copyright belongs to the individual contributors.

1.3 Authors and Maintainers

The original SkePU (v1) was created in 2010 by Johan Enmyren and Christoph Kessler [7]. Over the
years, a number of people have contributed to SkePU 1, including Usman Dastgeer [3]. The major
revision SkePU 2 was designed by August Ernstsson, Lu Li and Christoph Kessler [8]. The major
revision towards SkePU 3 was designed by August Ernstsson, Christoph Kessler, Johan Ahlqvist,
and Suejb Memeti with input from partners in the EXA2PRO project [9,/10].

August Ernstssorﬂ is the current maintainer of SkePU.

1.4 Dependencies and Requirements

SkePU is fundamentally structured around C++11 features and thus requires a mature C++11
compiler. It has been tested with relatively recent versions of Clang and GCC, and NVCC version 9.

!The version of SkePU documented here is the forthcoming official release of SkePU 3.3 of late 2025.
2august.ernstsson@liu.se



It also uses the STL, including C++11 additions. It has been tested with libstdc++ and libc++.
SkePU does not depend on other libraries.

SkePU requires the LLVM and Clang source when building the source-to-source translator. The
translator produces valid C++11, OpenCL and/or CUDA source code and can thus be used on a
separate system than the target if necessary (”cross-precompilation”).

The StarPU MPI backend requires a recent GCC compiler, an OpenMP library, an MPI library
(tested with OpenMPI version 2.1), and StarPU built from the master branch.

1.5 Example

We will introduce the SkePU syntax with an example, see Listing

The function ppmcc calculates a statistical test on two vectors x and y. It creates three skeleton
instances: sum as a reduction over ordinary floatingpoint addition; sumSquare as a fused map and
reduce computing the sum of squares of an operand data-container; and dotProduct as another
MapReduce instantiation with ordinary multiplication and addition, realizing a dot product. After
their construction, these skeleton instances can be invoked on SkePU data-container operands like
ordinary hand-written C+4 functions.

1.6 Installation

This section explains how to build and install the clang-based version of the SkePU pre-compiler,
SkePU-tool.

There are three steps to do when building skepu-tool from source:

e Getting the source
e Build skepu-tool

e Install skepu-tool

Getting the source

The public SkePU source code repository is available on GitHub: https://github.com/skepu/
skepu.git. Clone the main repository to your local system with git clone.
The main SkePU repository includes Git submodules.

e LLVM: This is an external dependency to the LLVM project. It is used only for building the
SkePU precompiler tool. This submodule repository is patched as part of the initialization
process of SkePU, and should not be touched by a SkePU user, or even a SkePU contributor
who does not need to make in-depth modifications to the precompiler.

e skepu-headers: This is an internal SkePU submodule which holds the SkePU run-time sys-
tem, i.e. the template header library. Most SkePU contributors would make changes in this
submodule.

Enter the cloned main repository and fetch the submodules by running git submodule update
—--init. This process can take a while, as the LLVM repository is large.


https://github.com/skepu/skepu.git
https://github.com/skepu/skepu.git

Listing 1.1: Example SkePU 3 user function: A linear congruential generator.

#include <iostream>
#include <cmath>
#include <skepu>

// Unary user function
float square(float a)
{

return a * a;

}

// Binary user function
float mult(float a, float b)
{

return a * b;

}

// User function template
template<typename T>
T plus(T a, T b)
{
return a + b;

3

// Function computing PPMCC
float ppmcc (skepu::Vector<float> &x, skepu::Vector<float> &y)
{

// Instance of Reduce skeleton

auto sum = skepu::Reduce(plus<float>);

// Instance of MapReduce skeleton
auto sumSquare = skepu::MapReduce<1>(square, plus<float>);

// Instance with lambda syntax

auto dotProduct = skepu::MapReduce <2>(
[l (float a, float b) { returmn a * b; I},
[] (float a, float b) { returmn a + b; }

e

size_t N = x.size();

float sumX = sum(x);

float sumY = sum(y);

return (N * dotProduct(x, y) - sumX * sumY)

/ sqrt ((N * sumSquare(x) - pow(sumX, 2))
* (N * sumSquare(y) - pow(sumY, 2)));
}

int main ()
{

const size_t size = 100;

// Vector operands
skepu::Vector<float> x(size), y(size);
x.randomize (1, 3);
y.randomize (2, 4);

std::cout << "X: " << x << "\Il";
std::cout << "Y:, " << y << "\iM;

float res = ppmcc(x, y);



Building skepu-tool

SkePU-tool uses a CMake-based build procedure. The CMake scripts requires CMake version 3.13
or later. Best practice is to create an out of source build folder. In the following code snippet, we
will use <src>/build. The following commands will build skepu-tool:

mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make

A couple of notable build options:

Option name Default value  Description

SKEPU__ENABLE_TESTING OFF (Release) Enables the test suite
ON (Debug) for skepu-tool.

SKEPU_ BUILD _EXAMPLES OFF (Release) Enables building skepu
ON (Debug) examples

For more build options, run cmake -LAH.

1.7 Usage
The source-to-source translator tool skepu-tool accepts as arguments:

e input file path: -name <filename>,
e output directory: -dir <directory>,
e output file name: <filename> (without file extension),

e any combination of backends to be generated: -cuda -opencl -openmp.

A complete list of supported flags, and further instructions, can be found by running skepu-tool
-help on the clang based skepu-tool.

Note that code for the sequential backend is always generated.

SkePU programs (source files) are written as if a sequential implementation—without source
translation—was targeted. In fact, such an implementation exists and is automatically selected if
non-transformed source files are compiled directly. Make sure to #include header skepu, which
contains all of the SkePU libraryﬂ

We recommend to take a look at the included example SkePU programs and Makefiles to get
an idea of how everything works in practice.

Include directories

The Clang based skepu-tool uses Clang libraries and will perform an actual parse to be able to
properly analyze and transform the source code; still, it is not a fully-featured compiler as you would
get with a pre-configured package of, e.g., Clang or GCC. This has consequences when it comes to
locating platform and system-specific include directories, as these have to be specified explicitly.

By adding the —- token to the arguments list, you signal that any remaining arguments should be
passed directly to the underlying Clang engine. These arguments are formatted as standard Clang
arguments. The required arguments are as follows:

e —std=c++11;

3 Almost everything in SkePU is templates, so there is no penalty from including skeletons etc., which are not used.



e include path to Clang’s compiler-specific C++ headers,
-I <path_ to_skepu>/lib/SkePU/clang-headers, where the path is the root of the Clang
sources (typically in the tools directory in the LLVM tree);

e include path to the SkePU source tree: -I <path to skepu>/include;

e include path(s) to the C++ standard library, platform-specific;

additional flags as necessary for the particular application, as if it was being compiled.

Debugging

Standard debuggers can be used with SkePU. Per default, SkePU does not use or require exceptions,
and reports internal fatal errors to stderr and terminates. For facilitating debugging, defining the
SKEPU_ENABLE EXCEPTIONS macro will instead cause SkePU to report these errors by throwing
exceptions. This should not be used for error recovery in release builds, as the internal state of
SkePU is not consistent after an error. (The types of errors reported this way are mostly related to
GPU management.)

1.7.1 StarPU MPI

To use the StarPU MPI backend, precompile the source with the flags ~openmp -starpu-mpi. If
only the Map skeleton is used in a program, one can also enable the cuda backend. Do not forget to
add the link flags and include flags that is needed to compile StarPU codes.

When using the SkePU StarPU MPI backend, do not forget to make sure the code is safe to
execute on multiple ranks at the same time. The skepu: :external function can be used to make
a region of code safe. Writing to file is one example where multiple nodes cannot execute the same
region at the same time.

1.7.2 Clang skepu-tool and CMake

The clang skepu-tool offers a CMake function to automatically configure the precompilation step.
The syntax is as follows:

skepu_add_executable(<name> [EXCLUDE_FROM_ALL]
[[[CUDA] [OpenCL] [OpenMP]] | [MPI]]
SKEPUSRC ssrcl [ssrc2 ...]
[SRC srcl [src2 ...1)

The function is a wrapper around add executable that will generate precompilation targets for
the SkePU sources listed as argument. Any include directories added via target include_directory
or target link library will propagate to the precompilation targets as well. The MPI backend
option to skepu add executable implies OpenMP.

To be able to use the function, add find_package (SkePU) to the CMakeLists.txt file. If SkePU
is not installed in a path that CMake is aware of, one adds the argument HINTS <skepu prefix>
to find package.

1.8 Limitations

The following section details limitations as of 2020-05-20.



1.8.1 SkePU general

C++ purists, please do not use const with SkePU. SkePU is not const-correct, due to technical
issues.
Known issues with the SkePU headers (in parts possibly outdated, to be revised):

e MapOverlap (all) code generation is disabled for OpenCL (Section [L.11.5]).

MapOverlap (3D, 4D) code generation is disabled for CUDA (Section [1.11.5]).
MapPairsReduce code generation is disabled for CUDA and OpenCL (Section |1.11.8).

Multi-valued return (Section [1.12)) is not implemented for MapOverlap.

Multi-valued return is disabled for CUDA and OpenCL.

Scan is missing OpenMP backend selection parameters (thread count, scheduling mode).

1.8.2 StarPU-MPI skeleton backends
The StarPU MPI backend is not very well tested yet. The following list are known issues:

e The data-containers are not fully compatible with the normal version of SkePU.
e The skeletons MapPool and Call are missing.

e Only the Map, MapPairs, and Reduce skeletons have support for CUDA and applications that
use other skeletons cannot have CUDA and StarPU-MPI enabled at the same time.

1.8.3 Clang SkePU tool

In addition, not all combinations of skeleton features are implemented/tested for this release.

1.9 Definitions

Please read through this section once to familiarize yourself with the terms used in this document.
It can then be used as a reference, as the terms defined here are typeset in italics at first mention in
each section.

Skeleton A generic program construct providing a computational pattern (such as map, reduce,
stencil, scan etc.), configurable in side-effect-free, problem-specific user code, and operating
on data-containers, e.g., vector or matrix operands. A skeleton exposes a sequential-looking
interface and encapsulates all implementation details such as parallelism, accelerator usage,
memory management, data transfers etc.

The skeletons in SkePU are all data-parallel, i.e., the computation graph is determined by the
dependence structure of container parameters and not dependent e.g. on the value of individual
elements in a data container.

Data-container An object of some SkePU data-container class, i.e., vector, matrix, or higher-
dimensional tensors. Data containers are homogeneous, i.e., contain objects of the same scalar
(non-container) type. In this document, the term ”container” refers exclusively to SkePU data-
containers (as opposed to, e.g., raw data pointers or STL vectors); in particular, it has nothing
to do with operating system containers.



Scalar The type of elements in a data-container. May be a fundamental type such as float, double
or int or a compound struct type satisfying certain rules. (Note that the compound types are
still referred to as scalar types when in containers.)

User function An operation performed repeatedly (perhaps in parallel) in a skeleton instance. A
user function in SkePU should not contain side effects, with the exception of writing to random
access arguments.

Skeleton instance An object of some skeleton type instantiated with one or more user functions,
and callable with (...)like an ordinary hand-written C++ function. May include state, such
as

e a backend specification,
e an erecution plan, and

e skeleton-specific parameters, such as the initial value for a reduction or the overlap sizes
for a stencil.

Skeleton (instance) invocation The process of applying a skeleton instance to a set of parame-
ters. Performs some computation as specified by the instance’s skeleton type and user function.

Output argument For the skeletons which return a container, this container is passed as the first
argument in a skeleton invocation. If the skeleton instead returns a scalar, no argument is
passed and the value is instead the evaluated value of the invocation expression (i.e., the return
value).

Element-wise parameter/argument A container argument to a skeleton instance, elements of
which, during skeleton invocation, is passed to the corresponding user function parameter as
a scalar value. Iterators into containers can also be used for these parameters to narrow down
the range of accessed elements.

Random access parameter/argument A container argument to a skeleton instance, which, dur-
ing skeleton invocation, is passed as a proxy-container object to the corresponding user function
parameter so that arbitrary elements can be accessed by the user function.

Uniform parameter/argument A scalar argument to a skeleton invocation, passed unaltered to
each user function call.

Backend The compute units and/or programming interface to use when executing a skeleton

Backend specification An object of type BackendSpec. Encodes a backend (e.g., OpenMP) along
with backend-specific parameters for execution (e.g., number of threads) for use by a skeleton
instance. Overrides execution plans when selecting backends.

Tuning The process of training a skeleton instance on differently sized input data to determine the
optimal backend in each case.

Execution plan Generated during tuning and stored in a skeleton instance. Helps select the proper
backend for a certain input size.

Source-to-source translator / precompiler (skepu-tool) Clang-based tool which transforms
SkePU programs for parallel execution. Accepts C++11 code as input and produces C++11 /
CUDA / OpenCL / OpenMP code as output. Built by user from Clang sources, patched with
SkePU-provided extensions.



Host compiler User-provided C++11/CUDA compiler which performs the final build of a SkePU
program, producing an executable. Can also be used on raw (non-precompiled) SkePU source
for a sequential executable.

1.10 Fundamental SkePU concepts

1.10.1 The basic Map skeleton structure and its derivatives

Map is a term widely used in programming interfaces, sequential as well as parallel, as a name
for a construct that transforms a set of values to another set of values in accordance with some
transformation (mapping) function f. This function is typically a pure function, deterministic and
without side effects, which aids the compiler or interpreter in automatic program translation and
optimization. In a statically typed language like C++, the types of the domain and image are fixed
but typically they can be different from each other.

SkePU borrows the map label for its Map skeleton. While Map is and does everything mentioned
in the preceding paragraph, its versatility and importance in SkePU greatly exceeds that of typical
map constructs. Map is the fundamental building block of the SkePU programming interface: it is the
default building block for encoding data parallel computations unless a particularly specific pattern
is needed, and in those cases, the vast majority of skeleton patterns in SkePU are directly based upon
the foundations of Map. Indeed, the names tell the story: MapReduce, MapPairs, MapPairsReduce,
MapPool and MapOverlap are all either specialized variations of Map or fusions with another pattern.
The important role played by Map means that understanding the syntax, capabilities, and limitations
of this skeleton is of utmost importance for anyone interested in using or otherwise learning SkePU.

1.10.2 Freely accessible containers inside user functions

Map patterns often only concern themselves with providing a single element from the input data
set as argument to the mapping operator. To perform a computation with a non-trivial dependency
pattern, the operators can be defined as lezical closures which capture the enclosing scope, allowing
the use of any free variables inside the operator.

The multi-backend nature of SkePU makes such constructions impractical from an implementa-
tion standpointE] The backend environments can have different programming models and the memory
spaces are typically separate from the C++ domain perceived by the SkePU user. SkePU therefore
require that any auxiliary data structures—limited to smart containers and scalar values—are de-
clared as bound wvariables in the user function signature. There are particular rules for how these

objects are declared and passed, discussed in Section [1.10.3

Proxy Container Objects in User Functions SkePU smart containers are C++ objects of
intricate class templates, and cannot be made available in a backend execution context. Therefore,
smart containers as bound variables in user functions are encoded as proxry containers.

Listing illustrates the use of auxiliary smart containers in the matrix-vector multiplication
skeleton instance mvmultE] and Figure 77 illustrates how using proxies bring entire container data sets
into the user function. This is a Map instance with no element-wise inputs, which is a surprisingly
powerful construct enabled by the SkePU design principles presented in Section

4SkePU user functions may be defined as lambda expressions, which can act as lexical closures in C++, but SkePU
treats them strictly as ”syntactic sugar”. See Section ?? for further discussion.

5Note that this is not the preferred way to encode matrix-vector multiplication since SkePU 3, with the introduction
of the MatRow proxy container. A better way is shown in Listing ?7.
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Listing 1.2: Matrix-vector multiply in the SkePU 2 style, without MatRow.

template<typename T>
T mvmult_f (skepu::IndexlD row, const skepu::Mat<T> m, const skepu::Vec<T> v

)

{
T res = 0;
for (size_t j = 0; j < v.size; ++j)
res += m(row.i, j) * v(j);
return res;
}

skepu::Vector<float> y(height), x(width);
skepu::Matrix<float> A(height, width);
auto mvmult = skepu::Map(mvmult_f);
mvmult(y, A, x);

1.10.3 Multi-variadic type signatures

The central aspect of Map which gives it its high flexibility and expressive power compared to many
other skeleton programming frameworks is the multi-variadic interfaceﬁ The underlying C++-11
features which enable this generational learﬂ are designed to be used by framework engineers, and
the significant complexity of implementation is elegantly hidden beneath the framework boundaries.
For the SkePU user, it means that using the map construct is very easy for trivial computations but
enables great adaptivity for more involved situations.

A Map skeleton instance and the corresponding user function are four-way variadic. Arguments
of a call to the instance are effectively grouped into four sets:

e output arguments (see Section (1.10.4)),

e clement-wise input arguments,
e random-access input arguments, and

e uniform input arguments.

The size (henceforth arity) of each group is flexible and up to the user to choose based on the
use-case at hand. The only restriction is that there has to be at least one output argumentﬁ All Map-
like skeletons in SkePU use the output container to determine the degree of parallelism: each element
corresponds to an invocation of the user function and is an independent task that could be mapped
and scheduled for execution as a unit. It does not matter how each group is ordered internally, but the
relative order of each group must be taken: outputs come first, followed by element-wise containers
(if any), followed by random-access containers (if any), and finally uniform scalars (if any).

Element-wise ("elwise”) parameters in a user function are scalar values (or user types, see Sec-
tion ?7), with the corresponding arguments in a skeleton invocation being SkePU containers. Each
element of the container is uniquely mapped to the parameter of a single user function invocation,

Along with type-safety, flexibility was the main contribution of the original SkePU 2 design [15], and prompted
the complete API redesign from SkePU 1. The original impetus for this change was that the SkePU 1 model of having
separate skeletons for unary, binary, and ternary Map is not ideal neither from a user nor maintainer perspective in a
high-level parallel programming framework.

"Mainly variadic templates and advances in template meta-programming: the same techniques behind the imple-
mentation of, e.g., std: :tuple from the C++ standard library.

8Call is much like a Map with no return value or element-wise arguments.

11



skel( resA, resB, inputs... ); skel( res, inputs... );

esAl [T F ]|
esB| [ TP T T T |

=8 B B B B B BN BN

Figure 1.1: Difference in return value storage between using multi-valued return (left) and single-
value (by manually managed array-of-struct) return (right).

in a data-parallel fashion. Random access parameters and arguments are both containers (but ex-
pressed slightly differently, as explained later) and all elements are accessible from within a single
user function invocation.

In user function definitions, the function signature encodes the outputs as the return type of the
function and the rest of the arguments come within the parentheses. Extra care has to be observed
when crafting a user function, since SkePU uses the function signature when determining the type
information for a skeleton instance. Because random-access container arguments are represented
as container proxy types (see Sections in the user function signature, the four groupings
have natural separations in the type system. SkePU uses template meta-programming and the pre-
compiler to analyze the types in the function header and construct the internal groupings. Figure 77?7
contains an illustration of how the parameter groups bring data from the arguments into the user
function in different ways.

Astute readers may notice that the random-access container group is allowed to be empty, in
which case the distinction between where the element-wise arguments end and the uniform scalars
begin is unavailable. A Map instance definition can optionally contain an explicit template argument,
as in auto instance = skepu::Map<N>(...); where N denotes the element-wise arity, and if not
present in the construct, SkePU will make a best-guess deduction based on the parameter list (the
formal arguments) of the user function. Skeleton instances are fully statically typed, so if the deduced
arity differs from the actual arguments at the skeleton invocation site, a compile-time error occursﬂ

1.10.4 Multi-valued return

SkePU 3 introduced tuple-like return functionality for cases where a single skeleton instance requires
multiple (element-wise) output containers. This way, multiple return values can be computed by
the same user function, operating on the inputs in one sweep, potentially improving data locality
compared to two separate skeleton invocations after each other. Although the values are returned in
a tuple-like manner, the output containers are completely separate objects (see Figure . This
distinguishes this new feature from the use of custom structs (”"user types”, see Section ?7?) as return
values, as those are stored in array-of-records format.

To use this feature, we specify the return type in the user function signature as skepu: :multiple<T,
(U, ...]>, i.e., analogous to std::tuple. Then, at the site of the return statement, we construct
this compound object by skepu: :ret(expr, [expr, ...]).

Listing shows an example of a user function utilizing multi-valued return.

The skeleton instance declaration and invocation follows the syntax of ordinary Map, but instead

of supplying one output container as the first argument, specify several of the correct types and
order, as in Listing

9The pre-compiler has access to the entire AST and can in principle look at both skeleton instantiation and skeleton
invocations for arity deduction; however, SkePU is designed and implemented (Chapter ??) such that programs are
semantically sound C++ programs also without the pre-compiler.

12



Listing 1.3: User function with multi-valued return.

skepu::multiple<int, float>
2 multi_f (int a, int b, skepu::Vec<float> c, int d)
{
return skepu::ret(a * b, (float)a / b);
}

Listing 1.4: Using multi-valued return with Map in SkePU 3.

skepu::Vector<int> vl(size), v2(size), ri(size);
skepu::Vector<float> e(1);

auto multi = skepu::Map<2>(multi_f);

(S

multi(rl, r2, vi, v2, e, 10);

Multi-valued return statements are available in the skeletons which follow the typical map pattern:
Map, MapPairs, and MapOverlap.

1.10.5 Index-dependent computations

Another feature of Map-derived SkePU skeletons is the option to access the index for the currently
processed container element to the user function. This is handled automatically, deduced from the
user function signature. An index parameter’s type is one out of four types: IndexND where N is the
dimensionality of the index, as shown in the type declarations in Listing

The Mandelbrot fractal generation in the SkePU example programs collection (Section [1.19) is
a typical example of a computation where the user function is reliant on the current index into the
resulting Matrix container.

1.11 Skeletons

SkePU provides a number of skeletons which represent different data-parallel patterns, SkePU 3.3
(2025) encompasses currently nine different skeletons:

e Map,
e Reduce,

e MapReduce,

10The IndexND feature replaces the dedicated Generate skeleton of SkePU 1, allowing for a commonly seen pat-
tern—calling Generate to generate a vector of consecutive indices and then pass this vector to MapArray—to be
implemented in one single Map call.

Listing 1.5: Index types corresponding to each smart container.

struct Index1D { size_t i; };
struct Index2D { size_t row, col; }; // note!
struct Index3D { size_t i, j, k; };

4 struct Index4D { size_t i, j, k, 1; };
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Table 1.1: Skeleton Feature Matrix (adapted from Ernstsson [9])

Feature Skeleton: |Map MapPairs  MapOverlap MapPool Reduce Scan MapReduce MapPairsReduce Call
Elwise dimension in 1-4 1 1-4 1-4 1-4** 1 1-2 1 0
Elwise dimension out Same as in 2 Same as in  Same as in  0-1 1 0 1 0
Indexed Yes Yes Yes Yes - - Yes Yes -
Multi-return Yes Yes Yes Yes - - Yes Yes -
Elwise parameters Variadic Variadic x2 1*** * * Variadic  Variadic x2 -

Full proxy parameters | Variadic Variadic Variadic Variadic - - Variadic  Variadic Variadic
Uniform parameters Variadic Variadic Variadic Variadic - - Variadic = Variadic Variadic
Region/pool proxy - - RegionXD  PoolXD - - - - -
MatRow/MatCol proxy |Yes Yes - - - - Yes Yes -
PRNG stream arg. Yes Yes - - - - Yes Yes -
Element strides Variadic 1D — Dimensional Dimensional — — — - -
Footnotes:

* Parameters to the user functions can be raw elements from the container or partial results, depending on evaluation
** Dimensions higher than 2 are linearized in the current implementation.
*** A RegionXD or PoolXD proxy object providing access to elements surrounding the current index is supplied.

e Scan,

MapOverlap,
e MapPool,

e MapPairs,

MapPairsReduce, and

e Call.

The skeletons can be loosely ordered into three groups: the map-based Map, MapPairs, and
MapOverlap, being element-wise transformations of data; Reduce and Scan, two forms of data accu-
mulation patterns with internal dependency structures; and explicit fusions of a map-based skeleton
in sequence with some form of reduction in MapReduce and MapPairsReduce. Call is a pseudo-
skeleton and does not fit into any grouping.

Table[L Il summarizes skeleton attributes and features to show similarities and differences between
them.

Each skeleton except for Call encodes a computational pattern which is efficiently parallelized. In
general, the skeletons are differentiated enough to make selection obvious for each use case. However,
there is some overlap; for example, MapReduce is an efficient combination of Map and Reduce in
sequence. This makes Reduce a special case of MapReduce.

Most of the skeletons are very flexible in how they can be used. All but Reduce and Scan are
variadic, and some have different behaviors for one- and two-dimensional computations.

Skeletons in SkePU are instantiated by calling factory functions named after the skeletons, re-
turning a ready-to-use skeleton instance. The type of this instance is implementation-defined and can
only be declared as auto. This has the consequence of an instance not being possible to declare be-
fore definition, passed as function arguments, etc., which is important to consider when architecting
applications based on SkePUIE

SkePU guarantees, however, that a skeleton instance supports a basic set of operations (a ”con-
cept” in C++ parlance).

instance(args...) Invokes the instance with the arguments. Specific rules for the argument list
applies to each skeleton.

1We are considering different solutions to work around this restriction, please contact the SkePU maintainers if this
is important for you.
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Figure 1.2: Illustrative diagram of the operand access scopes in the Map skeleton.

instance.tune() Performs tuning on the instance.

instance.setBackend(backendspec) Sets a backend specification to be used by the instance and
overrides the automatic choice.

instance.resetBackend() Clears a backend specification set by setBackend.

instance.setExecPlan(plan) Setsthe execution plan manually. The plan should be heap-allocated,
and ownership of it is immediately transferred to the instance and cannot be de-referenced by
the caller anymore.

1.11.1 Map

The fundamental property of Map is that it represents a set of computations without dependencies.
The amount of such computations matches the size of the element-wise container arguments in the
application of a Map instance. Each such computation is a call to (application of) the user function
associated with the Map instance, with the element-wise parameters taken from a certain position in
the inputs. The return value of the user function is directed to the matching position in the output
container.

Map can additionally accept any number of random access container arguments and uniform scalar
arguments.

When invoking a Map skeleton, the output container (required) is passed as the first argument,
followed by element-wise containers all of a size and format which matches the output container.
After this comes all random-access container arguments in a group, and then all uniform scalars.
The user function signature matches this grouping, but without a parameter for the output (this is
the return value) and the element-wise parameters being scalar types instead. The return value is
the output container, by reference.

An example can be found in Listing [1.6]

OpenMP Scheduling Modes

The OpenMP backend in SkePU 3 has changed. It is now possible to control the scheduling mode,
as the implementation uses the runtime option for OpenMP loop scheduling. The options are static
scheduling (default), dynamic scheduling, guided dynamic scheduling, or letting the OpenMP runtime
decide. Examples can be found in Listing
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Listing 1.6: Example usage of the Map skeleton.

#include <skepu>
#include <skepu-lib/io.hpp>

int sum(int a, int b)

{
return a + b;
}
int main ()
{
skepu::Vector<int> vi{1, 2, 3, 4}, v2{4, 3, 2, 1};
skepu::Vector<int> result(vl.size());
auto vsum = skepu::Map(sum) ;
vsum (result, vi, v2);
skepu::io::cout << result << "\n"; // Prints 5 5 5 5
return O;
}

Listing 1.7: Examples of explicit backend specifications with backend-specific settings.
skepu::BackendSpec spec{...};

// QOpenMP

spec.setType (skepu::Backend::Type::0penMP) ;
spec.setSchedulingMode (skepu::Backend::Scheduling::Static);
spec.setSchedulingMode (skepu::Backend::Scheduling::Dynamic) ;
spec.setSchedulingMode (skepu::Backend::Scheduling::Guided) ;
spec.setSchedulingMode (skepu::Backend::Scheduling::Auto) ;
spec.setCPUChunkSize (/*int*/) ;

// CUDA + OpenCL

spec.setType (skepu::Backend::Type::CUDA) ;

spec.setType (skepu::Backend::Type::0penCL) ;

spec.setDevices (/*int*/); // number of GPUs to use (default: all)
spec.setGPUThreads (/*int*/) ;

spec.setGPUBlocks (/*intx*/);

// Hybrid

spec.setType (skepu::Backend::Type::Hybrid) ;
spec.setCPUPartitionRatio(/*float*/); // CPU fraction, range [0, 1]

16
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Listing 1.8: Example usage of the Reduce skeleton.

#include <skepu>
#include <skepu-1lib/io.hpp>

int minimum(int a, int b)

{

return (a < b) ? a : b;

}

int main ()

{
skepu::Vector<int> v{5, 2, 4, 1, 3};

auto vmin = skepu::Reduce(minimum) ;
vmin.setStartValue(v(0)); // start value defaults to O otherwise
int result = vmin(v);

skepu::io::cout << result << "\n"; // Prints 1
return O;

1.11.2 Reduce

Reduce performs a standard reduction. Two modes are available: 1D reduction on vectors or ma-
trices and 2D reduction on matrices only. An instance of the former type accepts a vector or a
matrix, producing a scalar respectively a vector, while the latter only works on matrices. For matrix
reductions, the primary direction can be controlled with a parameter on the instance.

The reduction is allowed to be implemented in a tree pattern, so the user function(s) should be
associative.

instance.setReduceMode (mode) Sets the reduce mode for matrix reductions. The accepted values
are ReduceMode: :RowWise (default) or ReduceMode: :ColWise.

instance.setStartValue(wvalue) Sets the start value for reductions. Defaults to a default-constructed
object, which is 0 for built-in numeric types.

An example can be found in Listing

Pending Revisions to Reduce Skeleton

The Reduce skeleton and the reduce step of MapReduce is seeing some changes in SkePU 3.

Reduce modes will be revised to not always trigger data rearrangement such as transposition
(sublinear extra memory complexity).

A define is available to enable the old behavior up to a set container size,
-DSKEPU REDUCE2DCOL TRANSPOSE SIZE MAX [n].

The revisions to the MapReduce skeleton includes the availability of an additional reduce mode:
not only reduction over the entire container span, but also reduction over the innermost dimension
(row-wise for matrices).

1.11.3 MapReduce

MapReduce is a combination of Map and Reduce in sequence and offers the most features of both, for
example, only 1D reductions are supported.
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Listing 1.9: Reduction from matrix to vector, and from vector to scalar.

1 #include <skepu>
#include <skepu-1lib/io.hpp>

int sum(int a, int b)

{
6 return a + b;
}
int main ()
{
11 skepu::Matrix<int> m(5, 5, 1); // Constructs a 5x5 matrix, each element
set to 1
skepu::Vector<int> v(5); // Constructs a vector of length 5
auto summer = skepu::Reduce (sum);
summer (v, m);
16
skepu::io::cout << v << "\n"; // Prints 5.... 5 5 5 5 5
summer . setStartValue (0) ;
int result = summer (v);
21
skepu::io::cout << result << "\n"; // Prints 25
return O0;
}

Listing 1.10: Reduction from matrix to scalar.

#include <skepu>
#include <skepu-1lib/io.hpp>

int sum(int a, int b)

5 {
return a + b;
}
int main ()
10 {
skepu::Matrix<int> m(5, 5, 1); // Constructs a 5x5 matrix, each element
set to 1
auto summer = skepu::Reduce(sum, sum);
summer .setStartValue (0) ;
15 int result = summer (m) ;
skepu::io::cout << result << "\n"; // Prints 25
return O;
20 }

18



5

10

20

25

30

40

Listing 1.11: Difference between colwise and rowwise reduction on a matrix.

#include <skepu>
#include <skepu-1lib/io.hpp>

int sum(int a, int b)

{

3

return a + b;

int main ()

{

skepu::Matrix<int> m(5, 5); // Constructs a 5x5 matrix
skepu::Vector<int> v(5); // Constructs a vector of length 5

skepu::external ([&]{

int val = 1;
for (int row = 0; row < m.total_rows(); ++row)
{
for (int col = 0; col < m.total_cols(); ++col)
m(row, col) = val;
val += 1;
}

}, skepu::write(m));

skepu::io::cout << m << "\n";

// Prints:

// Matrix: (5 X 5)

// 1 11 11

// 2 2 2 2 2

// 3 3 3 3 3

// 4 4 4 4 4

// 55 5 55

auto summer = skepu::Reduce (sum);

summer . setReduceMode (skepu::ReduceMode: :RowWise) ;
summer (v, m);

skepu::io::cout << v << "\n"; // Prints 5.... 5 10 15 20 25

summer . setReduceMode (skepu::ReduceMode::ColWise) ;
summer (v, m);

skepu::io::cout << v << "\n"; // Prints 5.... 15 15 15 15 15

return O0;

19



10

15

Listing 1.12: Example usage of the MapReduce skeleton.

float add(float a, float b)
{

return a + b;

}

float mult(float a, float b)
{

return a *x b;

}

float dot_product(Vector<float> &vl, Vector<float> &v2)

{
auto dotprod = MapReduce<2>(mult, add);
return dotprod(vl, v2);

}

An instance is created from two user functions, one for mapping and one for reducing. The reduce
function should be associative.

instance.setStartValue(wvalue) Sets the initial value for reduction. Defaults to a default-constructed

object, which is 0 for built-in numeric types.

An example use of MapReduce, a dot product computation, can be found in Listing The
elementwise-access operand arity specifier <2> is not really necessary here, as the SkePU implemen-
tation can infer it automatically from the signatures of the user functions used at instantiation of
the MapReduce skeleton.

1.11.4 Scan

Scan performs a generalized prefix sum operation, either inclusive or exclusive.

When invoking a Scan skeleton, the output container is passed as the first argument, followed by
a single input container of equal size to the first argument. The return value is the output container,
by reference.

instance.setScanMode (mode) Sets the scan mode. The accepted values are ScanMode: : Inclusive
(default) or ScanMode: :Exclusive.

instance.setStartValue(value) Sets the start value for exclusive scan. Defaults to a default-
constructed object, which is 0 for built-in numeric types.

An example can be found in Listing

1.11.5 MapOverlap

MapOverlap is a stencil operation. It is similar to Map, but instead of a single input element, a region
of input elements is available in the user function, see Fig. The region is (for CPU backends)
passed as a pointer to the center element, see Fig. [L.3]

A MapOverlap instance can either be one-dimensional, working on vectors or matrices (the latter
with separable filter computations in 1D only) or multi-dimensional for matrices, 3D and 4D tensors.
The type is set per-instance and deduced from the user function.
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Listing 1.13: Example usage of the Scan skeleton.

#include <skepu>
#include <skepu-1lib/io.hpp>

int sum(int a, int b)
{

return a + b;

}

int main ()

{
skepu::Vector<int> v{1, 1, 1, 1, 13};
skepu::Vector<int> result(v.size());

auto vscan = skepu::Scan(sum);
vscan.setScanMode (skepu::ScanMode::Inclusive) ;
vscan(result, v);

skepu::io::cout << result << "\n"; // Prints 1 2 3 4 5

vscan.setScanMode (skepu::ScanMode::Exclusive) ;
vscan (result, v);

skepu::io::cout << result << "\n"; // Prints 0 1 2 3 4

MapOverlap represents a computational pattern with as many names as there are application
domains. It is known as a convolution in signal processing, stencil filter in image processing, window
function in statistics, and so on. The SkePU name of MapQOverlap indicates that it is another variant
of the archetypal map pattern, which would typically indicate that there is a degree of parallelism
equal to the number of elements in the result container. This is almost true, but not quite: the
number of user function invocations—and therefore schedulable tasks—follows this metric, but the
7overlap” part of the name reveals that these tasks are not independent. In a MapOverlap user
function, not only a single element-wise mapped element from an input container is accessible, but
also a region of surrounding elements. The individual access regions in the input data-container for
neighbored output element positions overlap each other, which therefore gives rise to read-after-write
dependencies between user function invocations and in general creates a more complex dependency
structure between input and output container elements.

In SkePU, the surrounding region is always a hyper-rectangle, i.e., a regular multi-dimensional
box in up to four dimensions. The side length of the hyper-rectangle can vary in each dimension,
and is defined by a overlap radius, which is the number of included elements away from the center
element. Therefore, the total amount of elements included in the overlap region is HZD (1 + 20;),
where o; is the overlap radius for dimension ¢ and D is the number of dimensions of the MapOverlap
instance as determined from its user function. See also Figure for illustration.

A MapQOverlap example showing a one-dimensional convolution is shown in Listing [1.14]

MapOverlap skeleton instances in SkePU can be of several different types:

e 1D MapOverlap on

— vector containers or

— matrix containers with
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Figure 1.3: Data access in a MapOverlap skeleton instance operating on 2D data-containers. When
calculating an output element (left), the user function has read random-access to all elements within
the Region2D data-container proxy object (middle). Note that Region2D differs from the Mat proxy
object (right) which gives read random-access to all elements in the input data-container.

* rOow-wise overlap,

* column-wise overlap,

* row-wise overlap followed by column-wise overlap (two passes), or
* column-wise overlap followed by row-wise overlap (two passes).

e 2D MapOverlap
On matrix containers.

e 3D MapOverlap
On three-dimensional tensor containers.

e 4D MapOverlap
On four-dimensional tensor containers.

The dimensionality of a MapOverlap instance is determined by the N in the Region/ND<T> type
used for the element-wise argument in the user function. These are compiler-known types and
dictate which internal implementation variant of the MapOverlap skeleton to use for code generation.
Note that the dimensionality of the MapOverlap pattern encoded in the skeleton instance does not
necessarily match the dimension of the smart data-containers the instance is applied on. In principle,
there could be a MapOverlap variant for any overlap dimension smaller than or equal to the dimension
of the element-wise container input. However, for practical reasons, only the combinations listed
above are implemented in SkePU.

In SkePU 3, a MapOverlap user function accepts a data-container proxry argument of type
RegionND, where N is the data-container’s dimensionality. It provides read access to all input
data-container elements ”under the stencil”, indexed relatively to the stencil’s center element which
matches the position of the corresponding element in the calculated output data-container being
calculated by applying the stencil. The syntax for a stencil computation using MapOverlap, namely
1D convolution with a 1D five-point stencil, can be seen in Listing

Edge handling modes

When MapOverlap user functions are evaluated near the edges of the input container, the overlapping
region may reach outside the bounds of the input. The expected behavior of out-of-bounds overlap
regions are application-dependent, but to avoid invalid memory accesses, the implementing framework
must do something to handle these scenarios. SkePU approaches this problem in several ways. There
are a total of four options for edge handling, three of which are proper edge-handling modes:
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Listing 1.14: Example usage of the MapOverlap skeleton: 1D convolution with a 1D five-point stencil.

float conv ( skepu::RegioniD<float> r, const skepu::Vec<float> stencil )
{
float res = 0;
for (int i = -r.oi; i <= r.oi; ++i)
res += r(i) * stencil(i + r.oi);
return res;

}

skepu::Vector<float> convolution ( skepu::Vector<float> &v )

{

auto convol = skepu::MapOverlap( conv );
Vector<float> stencil {1, 2, 4, 2, 1}; // stencil coefficients
Vector<float> result(v.size()); // output data-container

convol.setOverlap(2);
return convol ( result, v, stencil );

Output Input

Figure 1.4: Expected input and output container sizes when edge element synthesis is disabled, here
in 2D MapOverlap.

e 1o edge handling (default for 2D, 3D, and 4D MapOverlap),

e fixed padding with a user-set value,

e duplicate padding of the value closest to the edge (default for 1D MapOverlap), or
e cyclic (toroidal) padding.

If the "no edge handling” option is specified, SkePU requires that the size of the input container
is larger than the size of the output container, to ensure that all user function evaluations correspond
to a well-defined overlap region. Figure illustrates this restriction: the overlap radius in this
example is 2 in the x-axis and 1 in the y-axis, and the outpulle container size is 6 x 6 elements. The
input container is therefore expected to be of size 6 + 2 x 2 = 10 in the horizontal dimension and
6 + 2 % 1 = 8 in the vertical dimension.

In all other modes, the output container will be of equal size to the input container, and in cases
where the overlap region intersects the container boundaries, SkePU synthesizes virtual elements for
out-of-bounds accesses. The properties of each mode is visualized in Figure [1.5

Synthesis of out-of-bounds elements adds some run-time overhead, but auxiliary memory usage
is kept low: proportional to the overlap region size, not to the input data size. Depending on various

12Recall that SkePU always parallelizes skeletons on the output container range.
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Figure 1.5: Edge handling modes of 1D MapOverlap.

aspects of the skeleton instance at hand (especially container type), elements in the region may be
either pre-allocated or synthesized lazily upon access.

MapOverlap API

The parameter list for a user function to MapOverlap is important. It always starts with an int,
which is the overlap radius in the x-direction. 2D MapOverlap also has another int, which will bind
to the y-direction overlap radius. The presence of this parameter is used to deduce that an instance
is for 2D. A size t parameter follows, this is the stride. The next parameter is a pointer to of the
contained type, pointing to the center of the overlap region. Random-access container and uniform
scalar arguments follow just as in Map and MapReduce.

instance.setOverlap(radius) Sets the overlap radius for all available dimensions.

instance.setOverlap(4_radius, j 7radius) For 2D MapOverlap only. Sets the overlap for i and
j directions. Note: i corresponds to the y-axis and j corresponds to the x-axis.

instance.setOverlap(s_radius, j_radius, k_radius) For 3D MapOverlap only. Sets the over-
lap for i, j, and k directions.

instance.setOverlap(z radius, y radius, k radius, 1 radius) For 4D MapOverlap only.
Sets the overlap for i, j, k, and 1 directions.

instance.getOverlap() Returns the overlap radius: a single value for 1D MapOverlap, a std: :pair
(i, j) for 2D MapOverlap, and std: :tuples for 3D and 4D.

instance.setEdgeMode (mode) Setsthe mode to use for out-of-bounds accesses in the overlap region.
Allowed values are Edge: :Pad for a user-supplied constant value, Edge::Cyclic for cyclic
access, or Edge: :Duplicate (default) which duplicates the closest element.

instance.setOverlapMode (mode) For 1D MapOverlap: Sets the mode to use for operations on ma-
trices. Allowed values are Overlap: :RowWise (default), Overlap: :ColWise, Overlap: :RowColWise,
or Overlap: :ColRowWise. The latter two are for separable 2D operations, implemented as two
passes of 1D MapOverlap.

instance.setPad(pad) Sets the value to use for out-of-bounds accesses in the overlap region when
using Edge: :Pad overlap mode. Defaults to a default-constructed object, which is 0 for built-in
numeric types.

instance.setupdateMode (mode) Sets the mode of update to use for a single invocation to this in-
stance. Options: UpdateMode: :Normal, UpdateMode: :RedBlack, UpdateMode: :Red, UpdateMode: :Black.
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Figure 1.6: Left: A 2D Region proxy container object, for use with MapOverlap. The output
container after convolution of an input container with this region object will, by default, have extents
that are shorter by 2ry rows and 2rx columns, compared to the input container. — Right: A 2D
Pool proxy container object, for use with MapPool. The output container after pooling will have by
a factor of py x pr fewer elements than the input container.

1.11.6 MapPool

The MapPool skeleton has been added to SkePU in 2025 in combination with the introduction of
SkePU-DNN as part of the SkePU standard library [21]. It represents the pooling pattern, a partial,
2D blockwise reduction of a 2D, 3D or 4D input data container modeling an image (set) processed
in convolutional neural networks. Pooling results in an output container of same dimensionality as
the input container, but with accordingly lower extents in the two pooled dimensions. A common
reduction operator used in CNN pooling layers is maximum (”max-pooling”).

The block of elements on which the partial multidimensional reduction is applied is provided as a
Pool XD<> proxy container object (X € {1,2,3,4}) passed to the user function of a MapPool instance.
Pool XD<> is MapPool’s equivalent of the RegionXD<> proxy container object used in combination
with the MapOverlap skeleton, with the difference that Region objects always have odd extents and
are indexed positively and negatively relative to the center point (0,0), while for Pool objects the
origin (0,0) of intra-block indexing is in the left upper corner so that only positive indices occur,
see also Figure and the examples in Listings |1.15| (max-pooling) and (grayscaling). Another
difference is that the regions of neighbored output container elements overlap to a significant degree
in the input container (by how much, depends on the Region’s extents), while pools of neighbored
target container elements never overlap in the source container.

Like Region<>, a Pool<> proxy container object is generic in the coefficient element type it
contains. The pool’s elements refer to the corresponding input container elements being block-
reduced to a single value.

... TBD: list of configuration options of MapPool instances

1.11.7 MapPairs

SkePU 3 added an additional top-level skeleton, MapPairs. This skeleton represents a Cartesian
product-style pattern, operating on two distinct sets of element-wise container inputs. Each vector
set may contain an arbitrary number of vector containers, similar to the variadicity of Map. All of
the vectors in a set are expected to be of the same size. The arities in both directions are always
present in the skeleton construction as explicit template arguments.

Each Cartesian combination of vector set indices generates one user function invocation, the result
of which is an element in a Matrix. As in Map, there is an optional Index2D parameter in the user
function signature to access this index.
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Listing 1.15: 2 x 2 max-pooling computation with MapPool skeleton along dimensions 2 and 3 over
4D tensor input and output containers.

float max_pooling_uf (skepu::Poold4D<float> pool) {
float maxval = pool(0,0,0,0);
for (size_t j = 0; j < pool.sj; ++j)
for (size_t k = 0; k < pool.sk; ++k) {
float val = pool(0, j, k, 0);

maxval = (maxval > val) 7 maxval : val;
b
return maxval;
b
auto skel_pool_max = skepu::MapPool(max_pooling_uf) ;

// input, output are of type skepu::Tensor4<float>
skel_pool_max.setPoolSize (1, 2, 2, 1);
skel_pool_max (output, input);

Listing 1.16: Grayscaling of each image pixel from its RGB values stored in the innermost dimension
(4) of a 4D tensor input container holding a batch of RGB images, using the MapPool skeleton and
a user function taking a (1 x 1 X 1 x 3) Pool4D<> proxy container.

float gray_scale_kernel (skepu::Pool4dD<float> pool) {
return (0.2989f * pool(0,0,0,0) + // red channel
0.5870f * pool(0,0,0,1) + // green ch.
0.1140f * po00l(0,0,0,2)); // blue ch.
}
auto grayscaler = skepu::MapPool(gray_scale_kernel);
grayscaler.setPoolSize(1,1,1,3);

Listing 1.17: Example usage of the MapPairs skeleton.

int mul(int a, int b) { return a * b }

3 void cartesian(size_t Vsize, size_t Hsize)

auto pairs = skepu::MapPairs(mul);

skepu::Vector<int> v1(Vsize, 3), hi(Hsize, 7);
8 skepu::Matrix<int> res(Vsize, Hsize);
pairs(res, v1, hil);

}
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Figure 1.7: Illustrative diagram of the MapPairs skeleton.

Advanced and more flexible use of MapPairs can be carried out similarly to other SkePU skeletons.
For instance, it retains flexibility of Map with regards to variadicity (5-way variadic, compared to Map
being four-way):

e Resulting outputs (see Section [1.10.4]),
e Element-wise-V ("vertical”, column-aligned) input arguments,

Element-wise-H (”horizontal”, row-aligned) input arguments,

Random-access input arguments,
e Uniform input arguments.

A MapPairs instance of higher arity looks like
auto pairs = skepu::MapPairs<3, 2>(...);.

This instance would accept three vertical and two horizontal input vectors.

1.11.8 MapPairsReduce

MapPairsReduce is the combination of a MapPairs followed by a row-wise or column-wise reduction
over the generated matrix elements. It returns a Vector containing the row-wise or column-wise
reduction, where the reduction dimension is specified as in 2D Reduce. Example usage of this
skeleton can be seen in Listing

Just like MapReduce, the skeleton is initialized with two user functions: one matching the format
of a MapPairs user function, and one meeting the restrictions of a Reduce user function.

MapPairsReduce supports arity <0,0> and up. If the arity is 0 in a dimension, it will determine
the size of the intermediate Matrix by the values given in a call to setDefaultSize(<Hsize>,
<Vsize>) member function beforehand.

The intermediate Matrix is not guaranteed to be stored in memory at any point.
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Figure 1.8: Illustrative diagram of the MapPairsReduce skeleton.
1.11.9 Call

Call is special in that it does not provide any pre-defined structure for computation. It is a way
to extend SkePU for computations which does not fit into any skeleton, while still utilizing features
such as smart containers and tuning. As such, Call provides a minimal interface.

The Call skeleton is deprecated since SkePU 3.1 and replaced by the skepu: : external construct.

1.12 Multi-Valued Return from Skeletons and User Functions

SkePU 3 introduces tuple-like return functionality for cases where a single skeleton instance requires
multiple (element-wise) output containers. This way, multiple return values can be computed by
the same user function, operating on the inputs in one sequence, potentially improving data locality
compared to two separate skeleton invocations after each other. Though the values are returned in
a tuple-like manner, the output containers are completely separate objects. This distinguishes this
new feature from the existing use of custom structs as (inputs or) return values, as those are stored
in array-of-records format.

To use this feature, specify the return type in the user function signature as
skepu: :multiple<[basic_type, ...]>, i.e., analogous to std::tuple. Then at the site of the
return statement, construct this compound object by skepu: :ret([expression, ...]).

Listing gives an example of a user function utilizing this:

The skeleton instance declaration and invocation follows the syntax of ordinary Map, but instead
of supplying one output container as the first argument, specify several of the correct types and
order. An example is given in Listing

Multi-valued return statements are available in the Map skeleton.
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Listing 1.18: Example usage of the MapPairsReduce skeleton.

int mul(int a, int b)

{
return a * b;
}
int sum(int a, int b)
{
return a + b;
}
void mappairsreduce(size_t Vsize, size_t Hsize)
{
auto mpr = skepu::MapPairsReduce (mul, sum);

skepu::Vector<int> v1(Vsize), hl(Hsize);
skepu::Vector<int> res(Hsize);

mpr . setReduceMode (skepu::ReduceMode::ColWise) ;
mpr (res, vl, hil);

Listing 1.19: Example of a user function using multi-valued return.

skepu::multiple<int, float>
multi_f (skepu::Index1D index, int a, int b, skepu::Vec<float> c, int d)

{
return skepu::ret(a * b, (float)a / b);

}

Listing 1.20: Example for a skeleton instance using multi-valued return.

skepu::Vector<int> vl(size), v2(size), ri(size);
skepu::Vector<float> e(1);

auto multi = skepu::Map<2>(multi_f);

multi(rl, r2, vi, v2, e, 10);
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Listing 1.21: Example for strided access to elementwise accessed data-container operands

int f(int a, int b) { /*x ... *x/ };
auto mapper = skepu::Map(f);
mapper.setStride (2, 4, 3);

skepu::Vector<int> out(16), in_a(N_A), in_b(N_B);

mapper (out, in_a, in_b); // out stride = 2, in_a stride = 4, in_b stride =3
out | | | | | | | |
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Figure 1.9: Strided elementwise access example. Image source: A. Ernstsson [9]

1.13 Strided Access to Data-Containers

Strided access to elementwise accessed container operands with non-unit strided is supported for all
Map-based skeletons since 2025. An example can be found in Listing [1.21], resulting in the access

pattern of Figure

1.14 Manual Backend Selection and Default Settings

In SkePU 3 it is possible to set a global backend specification, either externally or at runtime by calling
the function setGlobalBackendSpec. This specification will be used by default for all skeleton
instances. Overriding can be done on an instance basis using the member function setBackend, see

the example in Listing

Listing 1.22: API Mechanisms for manual backend selection in SkePU
skepu::BackendSpec spec{/*string or SkePU::Backend::Type enum*/1};

skepu::setGlobalBackendSpec (spec);
skepu::restoreDefaultGlobalBackendSpec () ;

skel.setBackend (other_spec); // now overrides global specification
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1.15 Tuning of Skeleton Instances

A skeleton instance can be tuned for backend selection by going though a process of training on
different input sizes of the element-wise arguments. This process is automated, but since there
is significant overhead (during the tuning process, not afterwards) it has to be started manually.
An instance is tuned by calling instance.tune(). Note that this is an experimental feature with
limitations. Only the size of element-wise arguments can be used as the tuner’s problem size, which
is not applicable to all types of computations possible with SkePU.

Tuning creates an internal execution plan for each skeleton instance, which is used as a look-up
table during skeleton instance invocation. It is also possible to construct such a plan manually, and
assign it to the skeleton instance.

1.16 Smart Data-Containers

The smart data-containers available in SkePU are Vector, Matrix, Tensor3 and Tensor4. They
are called ”smart” because they internally perform run-time optimizations such as coherent soft-
ware caching of accessed elements in GPU device memory [4] and some other optimizations [13].
Using these is mostly transparent, as they will optimize memory management and data movement
dynamically between CPU and GPUs.

There is also a manual low-level interface to the data containers’ coherence mechanism in order
to explicitly control coherence and data movement:

e container.updateHost() forces download of up-to-date data from the GPUs (i.e., a flush
operation), and

e container.invalidateDeviceData() forces a re-upload at the next skeleton invocation on a
GPU (i.e., an invalidation operation).

Data-container element access in user functions should normally use the operator (index) access.
Coherence for container elements is maintained at skeleton calls only. Element access on the CPU
(e.g., in I/O code) can be done either with the—now deprecated—operator [indez], which includes
overhead for automatically checking for the coherence state of remote copies, or operator (indez)
which provides direct, no-overhead access, if the coherence state of the container is clear from the
context (e.g., after a manual flush operation).

When smart data-containers are not used as element-wise accessed parameters to user functions
(which is the default access type in Map) but require random access to multiple or all element, it is im-
portant to note that separate data-container proxy object types are to be used in user-function code,
such as Vec and Mat. These proxy types do not provide the full smart data-container functionality
and are rather used with a C-style interface for better portability to accelerator system platforms not
supporting full C++, such as OpenCL. Elements are retrieved using prozycontainer.datalindez]
member, and size, rows, cols etc. are members and not member functions. By default, the argu-
ments are read/writeable and will encur copy operations both up and down from GPUs; by adding
the const qualifier, the copy-down is eliminated. Similarily, a [[skepu::out]] attribute will turn
them into output parameters.

1.16.1 Smart Data-Container Set

The SkePU smart data-container set includes array abstractions in one to four dimensions: 1D ”vec-
tor”, 2D ”matrix”, and tensors of three and four dimensions. Smart data-container dimensionality
in SkePU 3 is therefore static, though their extents (sizes in each dimension) are dynamic.
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Instances of these tensor types are created with one constructor argument for each dimension.
Optionally an additional argument of type T specifices the default value of all elements in the con-
tainer.
skepu::Vector<float> v(diml);
skepu::Matrix<float> m(diml, dim2);
skepu::Tensor3<float> t3(diml, dim2, dim3);
skepu::Tensor4<float> t4(diml, dim2, dim3, dim4);

The Index XD object set in SkePU, useable in e.g. user function signatures, comprises these structs
for 1D to 4D container access, respectively:
struct Index1D { size_t i; };
struct Index2D { size_t row, col; }; // note!
struct Index3D { size_t i, j, k; };
struct Index4D { size_t i, j, k, 1; I};

Note that the naming convention is different for matrix indices for compatibility reasons.

Tensor Usage
Tensor3<T> and Tensor4<T> are useable in a way analogous to Matrix<T> in most cases.

e Map: Over the full domain without regard to dimensionality Optional argument Index3D for
Tensor3<T> and Index4D for Tensor4<T> ufs

e Reduce: Over full domain or over innermost dimension.
e MapReduce See Map. For the reduce step, over full domain or the innermost dimension.

e Scan: Over full domain.

e MapOverlap: Overlap radius limited to 1 in each dimension (default). Larger overlap is possible,
dependent on backend support.

e Call: See Map
e MapPool: ... TBD

MapPairs and MapPairsReduce are not supported for 3D and 4D tensors.

1.16.2 Smart Container Element Access

SkePU 3 deprecates the angle bracket [ ]-notation for smart container element read/write access
outside user functions. This is part of a simplification of the coherency systems for manual element
access from the host (CPU) side.

The user should flush the whole container instead before doing single-element accesses of user
function data, see Section

Instead of angle brackets, the parentheses ( )-notation is extended to higher dimensionality. This
syntax accepts one index argument for each dimension of the underlying container. The indices count
must equal container dimensionality, otherwise there is a compile-time error.

Formally, the syntax is container(i[, j[, k[, 1]]]) [= value];

This change means that there is no interface for 1D indexing of higher-dimensionality containers.

There is no longer a coherency-satisfying single-element access mechanism in SkePU smart con-
tainers except inside user function proxy objects (Vec<T>, Mat<T>, etc). However, for correctness
debugging purposes, there is a macro to enable explicit flush of a container upon access,
-DSKEPU ALWAYS UPDATE HOST ON CPU ELEMENT ACCESS [0,1],
but note that this has serious performance implications.
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Memory Coherency

SkePU smart data-containers software-cache elements in device memory when used with a GPU back-
end. Due to lazy data transfers in an attempt of avoiding unnecessary data moves with subsequent
skeleton calls, cached and modified elements are only copied back to main memory at their next
use on CPU. This coherence mechanism is fully managed by SkePU—but only for data-container
element accesses that SkePU knows about, i.e., within skeleton instance calls. In some cases, e.g., for
C/C++ I/0O operations with global side-effects beyond the scope of SkePU, cached elements need to
be flushed manually.
SkePU provides a flush operation with options:

enum class FlushMode Default, Dealloc ;

where FlushMode: :Default is implicit if no other value is given.

There is a data-container member function flush as well as a variadic free template function
flush. The member function accepts a dynamic flush mode as an optional argument, which can be
selected at runtime. The free function takes the flush mode as a static constant which is known to
the compiler (and precompiler).

skepu::Vector<int> vi(n), v2(n);
skepu::Matrix<int> mi(n, n), m2(n, n);

vl.flush(); // FlushMode::Default
ml.flush(); // FlushMode::Default

skepu::flush(v2, m2); // FlushMode::Default

vl.flush (skepu::FlushMode::Dealloc) ;
ml.flush(skepu::FlushMode::Dealloc);
skepu::flush<skepu::FlushMode::Dealloc>(v2, m2);

There is no #pragma for flush declarations in SkePU, but the flush (member) functions are
compiler-known symbols to the precompiler, as are smart container classes, so the presence or absence
of flush operations in SkePU source code is subject to static analysis and optimization.

1.16.3 Matrix-row User Function Proxy Containers

SkePU has since version 2 allowed for flexible parameter lists for user functions, including so-called
random-access containers, in addition to the, for skeleton programming standard, element-wise
mapped containers. While this allows for powerful expressivity, very little about the access pat-
terns of these random-access containers is known to SkePU, and performance may thus not always
be ideal.

One common pattern when using Matrix as a random-access container argument is that each user
function invocation is only interested in one row of the matrix. This pattern is seen in matrix-vector
multiplication and similar multi-reduction-style computations. To improve SkePU performance in
these cases, SkePU 3 introduces a new proxy container object, MatRow<T>. Bridging the gap between
element-wise mapped and random-access container arguments, this proxy type when used in a Map
skeleton instance that maps over vectors (i.e., the result container(s) of the skeleton are Vector),
makes available one single row of the argument matrix container to the user function.

Note: it is required that the matrix container has at least as many rows as the result vector has
elements.

Example Matrix-vector multiplication using MatRow<T> may be implemented as folows:
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template<typename T>
T arr(const skepu::MatRow<T> mr, const skepu::Vec<T> v)

{
T res = 0;
for (size_t i = 0; i < v.size; ++i)
res += mr.datal[i] * v.datal[i];
return res;
}

Compared to the closest corresponding SkePU 2 implementation below (still valid in SkePU 3),
the code is more succinct and there is more information about the access pattern avaiable to SkePU.

template<typename T>
T arr(skepu::IndexlD row, const skepu::Mat<T> m, const skepu::Vec<T> v)
{
T res = 0;
for (size_t i = 0; i < v.size; ++1i)
res += m.datal[row.i * m.cols + i] * v.datal[i];
return res;

There is no change in syntax of skeleton instantiation or skeleton invocation needed for this
feature to apply.

Matrix-row user function proxy containers are available in user functions for Map, MapReduce,
and MapOverlap skeleton instances that satisfy the above requirements.

1.17 Using Custom Types

It is possible to use custom types in SkePU containers or inside user functions. These types should be
C-style structs for compatibility with OpenCL. Note: It is not guaranteed that a struct has the same
data layout in OpenCL as on the CPU. SkePU does not perform any translation between layouts, so
it is the responsibility of the user to ensure that the layout matches.

1.18 Calling Library Functions; Whitelisting

Sometimes, it can be beneficial to call built-in/library functions from inside user functions. By
default, SkePU assumes that all called functions are to be processed by the precompiler, which will
prevent using library functions, because SkePU does not know in general whether these are available
on every accelerator type supported and functionally equivalent to their CPU counterparts.

To avoid this issue, use the ~fnames argument of the SkePU precompiler. This flag tells SkePU
to ignore any function with this symbol name (all possible overloads), and it is up to the user to
ensure that the compiler and linker for each backend can find suitable functions to call.

This feature is useful for whitelisting mathematical functions or printf debugging, but is best
used very carefully, especially if accelerator backends are enabled. See the example usage below, as
part of the skepu-tool invocation. Multiple function names are separated by whitespace.

skepu-tool -fnames "sin_ cos"

1.19 Example programs

The SkePU distribution comes with a selection of example programs:
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e Cellular automaton (cellular automaton)

e Cumulative moving average (cma)

e Conjugate gradient solver (conjugate gradient)
e Coulumbic potential (coulombic)

e Dot product (dotproduct)

e Heat diffusion (heat_diffusion)

e Horner (horner)

e Image processing (image manip)

e Mandelbrot fractal generator (mandelbrot)

e Maximum-minimum (maxmin)

e Miller-Rabin primality test (miller rabin)

e Cellular automaton (mmmult)

e Monte-Carlo pi calculation (montecarlo)

e Matrix-vector multiplication, variant A (mvmult)
e Matrix-vector multiplication, variant B (mvmult_row)
e Matrix-vector multiplication, variant C (mmmult_ row_col)
e N-body simulation, variant A (nbody)

e N-body simulation, variant B (nbody mappairs)
e Pearson product-movement coefficient (ppmcc)

e Peak signal-to-noise ratio (psnr)

¢ Riemann sum (riemann sum)

e Taylor series (taylor)

1.20 More Information about SkePU

For further information about SkePU we refer to our publications.

SkePU 1 was introduced in 2010 and is presented in Enmyren and Kessler [7].

The integration of SkePU and StarPU to provide data-driven dynamic scheduling of asynchronous
skeleton calls was presented by Dastgeer et al. [5].

The second generation of a back-end selection tuning framework for SkePU was developed by
Dastgeer et al. [6]. Dastgeer also further developed the smart data-containers (Vector, Matrix) in [4].
Selection tuning and smart data-containers are still contained in today’s SkePU implementation.

SkePU 1 supports sequential and multithreaded CPU execution as well as single- and multi-GPU
execution in OpenMP and CUDA backends. These backends are, in modified form, still part of
today’s SkePU implementation. Experimental back-ends for SkePU 1 had also been developed for
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plain MPI [18] and Movidius Myriad 2 [23], but were not mature enough to be included in the public
distribution and were finally abandoned at the transition to SkePU-2.

Case studies on SkePU 1 include the porting of the EDGE flow simulation code [22], which
revealed a number of weaknesses in the SkePU 1 API and finally led to the design of SkePU 2.

SkePU 2 was introduced in 2016. It involved the complete redesign of the SkePU programming
interface based on C++11, and is described in Ernstsson et al. [15].

The generalization of smart containers for lazy execution of skeletons to provide global run-time
optimizations such as tiling and kernel fusion across data-flow graphs of containers and skeletons was
presented by Ernstsson and Kessler [13].

A new hybrid CPU-GPU back-end for SkePU 2 was proposed by Ohberg et al. [19] and is included
in today’s implementation.

The concept of multi-variant user functions and their implementation (included in SkePU-3) is
presented in Ernstsson and Kessler [14].

Panagiotou et al. [20] present a case study of using SkePU in a brain modeling application,
including first scaling results for the new SkePU 3 cluster backend based on StarPU-MPI [1], which
is included in the distribution.

A SkePU tutorial, including most of the new SkePU 3 features, can be found on the SkePU web
page |17].

The article [10] presents SkePU 3 (released 2020/2021) in its entirety. More details can be found
in Ernstsson’s PhD thesis [9).

The portable parallel pseudorandom number generator (SkePU-PRNG) with new syntax and
standard library functionality added in SkePU 3.1 is described in [16].

A study of the performance portability of SkePU 3 has been presented by Ernstsson et al. [12].

An experimental FPGA backend for a SkePU subset (realized as a custom variant of the OpenCL
backend) is described by Birath et al. |2].

Strided skeleton computations and the SkePU-DNN library for CNN/DNN training and inference
atop SkePU has been presented by Qummar et al. [21].

The SkeVU interactive trace visualization tool for SkePU is described by Ernstsson et al. [11].
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Chapter 2

SkeVU Visualization Tool

SkeVU [11] is an interactive visualization tool for execution traces of SkePU programs. It comes
pre-installed along with SkePU and can be found in the visualizer folder.

SkeVU uses a web server model where the web server component is implemented in Python using
Flask.

2.1 Setup

To setup the visualizer, it can be good to make a virtual environment due to Python dependencies.

1. (First time only) Create a virtual environment inside the visualizer directory.
cd visualizer/
python -m venv venv/

2. We can now activate the virtual environment:
source venv/bin/activate

3. (First time only) Next, we need to install Flask to run the visualization server.
pip install -r requirements.txt

4. Finally, to start the server, we simply run the following:
python visualizer.py

5. Now we have our server up and running, and can access it on the web on the following localhost
URL: http://127.0.0.1:5001. It is recommended to keep the server running in a dedicated
terminal window.

2.2 Basic usage

To use the visualizer, we first need to enable tracing in the SkePU runtime. We can do so by adding
the -DSKEPU TRACING flag when compiling. This causes the program to generate a JSON file when
it executes. Upload this file along with the source code for the program to the visualizer.

2.3 Setting and view options

TODO: Document the settings
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2.4 Dependence graph view

TODO: Document the graph view, mainly the node types and edge types. Use text
from the paper (CC license) once published.

38



Appendix A

Changes from SkePU 2 to SkePU 3

This appendix chapter summarizes the syntactical and behavioral changes from SkePU 2 to SkePU
3.

A.1 Changes in skeleton set and data-container set

The skeleton set has changed in SkePU 3, with the addition of the all-new MapPairs and MapPairsReduce
skeletons, important extensions to the capabilities of the standard Map skeleton, and an interface
change to improve usability of the MapOverlap skeleton. MapPool has been added for SkePU 3.3 in
2025.

The smart data-container set has also seen an extension in SkePU 3, by adding higher-dimensionality
tensors in Tensor3 and Tensor4. The coherency model of smart data-containers has been revised.

A.2 Namespace Change

The namespace for SkePU is changed in SkePU 3. Historically, the skepu:: namespace was used by
the initial SkePU release (”SkePU 17), and since SkePU 2 was a major source-breaking change from
SkePU 1, the decision was made to switch over the namespace as a way to communicate the source
incompatibilities.

Today, there is to our knowledge little or no application code in active use which depends on SkePU
1. The decision was therefore made to switch back to the version-agnostic skepu:: namespace for
new releases of SkePU, starting with SkePU 3. This has the additional benefit of communicating
that SkePU 3 also is a source-breaking transition from SkePU 2, although this time the scope of the
changes is much smaller and transitioning between SkePU 2 to 3 is expected to be much simpler.

The intention is to keep this namespace for future versions of SkePU, and future source-breaking
changes will be communicated in other ways.

The above namespace applies to skeletons and smart containers alike, as well as suporting con-
structs such as enums, backend specifications, container proxy objects, and index structs. In short,
every C+4 symbol in the library is affected. The exeption is C++11 attributes, whose names
are forced to be namespaced but these namespaces are distinct from the standard C++ names-
pace definitions. This was introducted to SkePU in version 2 and have always been skepu::, (e.g.
[[skepu: :out]] and will remain as such.

In addition to the namespace change the default include header (the main entry point to the
SkePU header library) has been changed. #include <skepu2.hpp> isreplaced by #include <skepu>
which aside from dropping the version now also mirrors the standard library with the absence of a
file extension. (Note that the include directive may be different depending on the directory setup.)
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A.3 Other Changes

The following major changes, described in more detail above, have been applied in the transition
from SkePU-2 to SkePU-3 (as of May 2020):

New skeletons MapPairs, MapPairsReduce;
Revised interface for MapOverlap (e.g., RegionXD proxy data-container object) and Reduce;
New container types Tensor3, Tensor4 and new container proxy types MatRow, Ten3, Ten4;

New backend selection mechanism, in both API and implementation, with settable global de-
faults and more options. Especially the OpenMP backend configuration options are expanded
with new scheduling mechanisms.

Deprecation of any STL-inherited dynamic features of the SkePU data-containers as a clarifi-
cation that they are to be used as static objects;

The SkePU 2 flush interface of smart data-containers was revised after feedback from EXA2PRO
project partners: flush with options.

Multi-valued return from skeletons and user functions;

Multi-variant user functions;

Dynamic scheduling option for all skeletons except Scan and Call;

New memory consistency model for smart containers: weak consistency;

New skepu: :external construct to frame external I/O operations to/from data-containers or
similar operations with side-effects that are not under the control of SkePU, providing sequential
consistency for given data-container objects at the construct’s boundaries;

New StarPU-MPI backend (available for some skeletons at this time).

Several of these design changes are the result of feedback from application partners in the running
H2020 FETHPC project EXA2PRO.
After the initial release of SkePU 3 in 2020/2021, new features have been added:

MapPool skeleton and Pool XD data-container proxy object;
Strided access in map-based skeletons;

Extensions of the standard library, e.g., SkePU-DNN for deep learning training and inference
with a PyTorch-like API implemented on top of SkePU skeletons;

The SkeVU interactive visualization tool for SkePU program execution traces.

A.4 Repository and License Changes

With the release of SkePU 3 in 2020/2021, the public distribution of SkePU has moved to https:
//github.com/skepu/skepu and the SkePU web page has moved from Linkoping University to
https://skepu.github.io.

The SkePU license has been changed from GPLv3 for SkePU-2 to a less restrictive modified
4-clause BSD license for SkePU-3.
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