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1 Introduction and motivation

In this lab, you will work with a high-level parallel programming framework. High-level parallel
programming aims to abstract and simplify architecture-specific properties of parallel computer
systems, and often targets multiple types of parallelism such as either multi-core CPU or GPU-
based systems, or sometimes hybrid execution on both at the same time. High-level interfaces are
also crucial for programming cloud computer systems, for example.

In earlier labs you explicitly described in your programs how multiple processor cores cooperate
by using constructs such as threads and locks. The similarities to a sequential program performing
the same task are relatively small. With high-level parallel programming, the goal is to write
programs with sequential semantics, that is, there is no explicit parallelism control in the program
code (such as locks). The framework, language, or compiler that provides high-level parallelism
is instead responsible to extract parallelism from the sequential semantics in the program. To do
this reliably, the functionality offered in the interface is typically reduced to a selection of common
patterns.

1.1 Skeleton programming

Skeleton programming is an approach to high-level parallel programming inspired by functional
programming, specifically higher-order functions. In functional programming, operations on data
is typically expressed by functions like map and reduce (or fold), where the arguments are not only
the data to operate on but also the operation itself, as a function object. Map and reduce are
examples of data parallel skeletons; there also exist task-parallel skeletons, but those are outside
the scope of this lab. In skeleton programming, map and reduce are examples of skeletons. The
function objects are called user functions.

For example, the map operation can accept the data set [1, 2, 3, 4] and the operation x → x2. The
output will be the data set [1, 4, 9, 16]. As each individual element can be computed independently
of the others, this is a prime target for parallelization; in fact, the map operation is ”embarrassingly”
parallel. Reduce is not as trivial, but parallelization can still be done. Given the data set [1, 2, 3, 4]
and the operation x, y → x+ y, the output will be 10. Naively summing the data set from left to
right will cause sequentialisation due to the dependencies; however, note that we can compute the
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partial sums 1 + 2 and 3 + 4 in parallel, even with the final addition improving from three to two
time steps in total. Applying a tree structure like this will make the time complexity logarithmic,
assuming that enough parallelism is available in the hardware.

By performing tree-structured reduction, we assume that the operation is associative, which
is true for addition. This is another example of how high-level parallel frameworks restrict the
interface: non-associative reductions cannot be parallelized in general, so most frameworks will not
accept those. Even with map we made several assumptions, such as that the operator does not
have any observable side effects.

1.2 SkePU

SkePU is a C++ framework for high-level parallel programming implementing the skeleton pro-
gramming approach. It is a research tool developed at LiU with support for multi-core CPU and
GPU backends, meaning that the programs can run either on the CPU or a GPU. SkePU can be
made to automatically select which backend to use at runtime, depending on the operation and
data size. To facilitate switching between CPU and GPU, SkePU implements smart containers
which will automatically manage data across the CPU/GPU boundary in an optimized manner.
SkePU supports the following skeletons:

• Map

• Reduce

• MapReduce

• Scan

• MapOverlap

As mentioned earlier, skeletons need a user function (i.e., an operator) to be used. User functions
in SkePU are normal C++ functions at first sight, but care has to be taken when writing these
functions. User functions should be self-contained, which means free functions without external
dependencies or side effects1. Additionally, the code inside a user function must not use any C++-
specific features (syntax or standard library), the reason being that SkePU transforms this code to
the GPU languages OpenCL and CUDA, which has C as a least common denominator.

Below is an example of a user function in SkePU.

1 float addOneFunc(float a)

2 {

3 return a+1;

4 }

Listing 1: User function in SkePU

It is used to instantiate a skeleton like below. The number <1> indicates a unary Map, that is,
elements will be picked from only one container argument later. The use of the auto type specifier
is mandatory, as the actual type of a SkePU skeleton is implementation-defined.

1Text logging from a user function can be useful for debugging and will work in certain cases.
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1 auto addOneMap = skepu2 ::Map <1>( addOneFunc);

Listing 2: Skeleton instantiation in SkePU

The skeleton is called/applied on SkePU containers like below.

1 addOneMap(res , input);

Listing 3: Calling a skeleton instance in SkePU

More information about SkePU can be found in the user guide, see the course lab webpage.

1.3 Backend specification

You can control which backend is used by SkePU by providing a backend specification (BackendSpec).
This is set up in the lab skeleton files by reading a string argument from the command line:

• CPU for a sequential backend,

• OpenMP for a multi-threaded backend,

• OpenCL for an OpenCL-based GPU backend,

• CUDA for a CUDA-based GPU backend (disabled in the labs).

The respective backends needs to be enabled when building the program to work at run-time.
(See Makefile.include).

It is also possible to set parameters for each backend. In the lab, you will only need to use
spec.setCPUThreads(<integer value>) which controls the number of threads used with the
OpenMP backend. If this is not specified, it will use the default from OpenMP, which tends
to be equal to the number of available cores. The recommended max number of threads in
this lab is 8, equal to the number of performance cores on the lab computers. Using more threads
can lead to reduced performance due to load balancing issues on the efficiency cores.

2 Assignments

The lab consists of four parts:

1. Dot product implementation (warm-up).

2. Averaging blur filter in three variants.

3. Median filtering.

4. Performance debugging with trace visualization.
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2.1 Assignment 1: Dot product

Implement a dot product computation using the MapReduce skeleton in SkePU. Use the dotproduct.cpp
file as a starting point, and look at addone.cpp for inspiration. Remember that the AddOne pro-
gram uses a unary Map (one input vector), while dot product requires a binary Map (two input
vectors). (Where do you specify this?)

Then make another implementation, this time using separate Map and Reduce skeletons. You
will need to add another Vector container to the program for this. Why?

Compare the performance of your MapReduce and Map + Reduce implementations. Also
compare performance of the MapReduce implementation with different backends.

Choose a suitable vector size for your measurements. Around 109 elements are required to
get reliable enough data to see the expected performance differences. You can also test multiple
input sizes.

Question 1.1: Why does SkePU have a ”fused” MapReduce when there already
are separate Map and Reduce skeletons?
Hint: Think about memory access patterns.

Question 1.2: Is there any practical reason to ever use separate Map and Reduce
in sequence?

Question 1.3: Is there a SkePU backend which is always more efficient to use,
or does this depend on the problem size? Why? Either show with measurements
or provide a valid reasoning.

Question 1.4: Try measuring the parallel backends with measureExecTime ex-
changed for measureExecTimeIdempotent. This measurement does a ”cold run”
of the lambda expression before running the proper measurement. Do you see a
difference for some backends, and if so, why?

2.2 Assignment 2: Averaging filters

In this exercise (and the next) you will implement image filters. The filters operate on Matrix
containers with the data-parallel SkePU skeleton MapOverlap, a variant of Map but where a region
of the container is accessible instead of just one element.

Study and test out the averaging filter in average.cpp. For each pixel in the output image, it
computes the average pixel color of the pixels in an surrounding region in the input image. This
produces a rough blurring effect.

Make sure you understand how the MapOverlap skeleton is used to accomplish this task. The
region radius is set inside main and appears in the user function as the parameters oj (x-radius)
and oi (y-radius). Note: Use only radius values in the range from 2 to 50. Note that pixels are
represented as three bytes in the matrices, so the overlap will be larger in the x-dimension. See
figure 1 for an illustration of the image as seen by the user function.
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Figure 1: Memory layout of the image for the 2D filters. The inner white region represents a pixel
in the output image, with the outer white region is the surrounding region in the input image (the
”overlap”) Each colored rectangle (subpixel) is one byte of data.

2.2.1 Separable averaging filter

Averaging filters have a property known as separability. This means that the two-dimensional
filtering operation can be separated into two one-dimensional filters instead 2 SkePU also supports
one-dimensional MapOverlaps over matrices, so your task is to reimplement the averaging filter in
this way. The source file already has a few starting points to help you out.

Note: The edge pixels of the output will not be exactly the same because of differences in the
edge handling. The ”safe” region (inset by the filter radius from the edge) should be identical,
however.

2.2.2 Gaussian filter

The averaging filter results in very rough-looking output images. To make a nicer-looking blur
effect, the Gaussian blur filter has non-uniform pixel weights, so that nearby pixels have a larger
contribution to the result. Implement a Gaussian filter with your separable filter as a starting point
(but keep them separate in the program). The function sampleGaussian generates a SkePU Vector
of weights (of size 2× radius+ 1, symmetric across the middle).

Question 2.1: Which version of the averaging filter (unified, separable) is the
most efficient? Why?

2The average pixel value in the region is also the average value of all the average values for each row.
avg2D(region) = avgrows(avgcolumns(region)). See appendix A for some more motivation.
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2.3 Assignment 3: Median filter

For the last assignment, your task is to implement a median filter with the MapOverlap skeleton.
The median filter works just like an averaging filter, but instead of using the average pixel value of
a region, the output is the median value. The challenge therefore is to sort the pixels in the region
in such a way that the median value can be identified.

Some things to take into consideration:

• SkePU user functions cannot have side effects, so it is not possible to dynamically allocate
memory in one.

• It is possible to call other functions from SkePU userfunctions, but you are recommended to
avoid that for this assignment.

• Consider the problem domain (pixels) and framework restrictions when implementing the
sorting. What sorting algorithms are suitable to use?

• Consider trying different approaches to show and contrast in the demo.

Question 3.1: In data-parallel skeletons like MapOverlap, all elements are pro-
cessed independently of each other. Is this a good fit for the median filter?
Why/why not?

Question 3.2: Describe the sequence of instructions executed in your userfunc-
tion. Is it data dependent? What does this mean for e.g., automatic vectorization,
or the GPU backend?

2.4 Assignment 4: Performance debugging with trace visualization

In this assignment, you will be analyzing an existing SkePU application and solve a performance
bottleneck using the SkePU trace visualizer.

The application you will analyze is an implementation of ”Conway’s Game of Life”, also known
as a 2D cellular automaton. Knowledge of the simulation is not required for this lab, but in short, it
simulates life and death of single-cell entities in a game world consisting of a 2D grid. The 2D grid
is represented by a matrix, which in the program is double-buffered (one iteration of the simulation
reads from A to compute B, the next one reads from B and writes to A, and so on).

There is a performance bottleneck in the program as given, arising from wrong assump-
tions about parallel performance on multicore CPU+GPU systems. Your task is to use the SkePU
trace visualization tool to show how this performance issue is visible in the trace-graph. First, run
the program (the trace.json file will be generated) and then run the visualizer with trace.json and
gameoflife.cpp as input files. (See Appendix B for how to use the visualizer.) Hint: If you see initial
red-colored nodes in the graph, consider that these may be related to cache effects and unavoidable.

A 100 × 100 matrix and 10 iterations are enough for the performance debugging.

Question 4.1: Where in the trace graph can you locate the performance issue?
Explain which node(s) in the graph are problematic and why.

Question 4.2: How can you easily fix this performance problem in the source
code? A single-line fix should be enough.
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(a) Original image. (b) Averaging filter of radius 16.

(c) Gaussian filter of radius 16. (d) Median filter of radius 16.

Figure 2: Example output of the image filters.

3 Practicalities

3.1 Lab skeleton structure

This section describes how to use and compile the skeleton source files provided and introduce a
few key points you need to know.

data/ This directory contains PNG images of various sizes to be used for the filtering exercises.
Note that the image ”gray” is grayscale and only contains one color channel per pixel; the others
are RGB.

output/ Empty directory suitable to store temporary output images in.

reference/ Contains reference output of the test image using the average, gaussian, and median
filters with a radius of 16. See figure 3.

include/ SkePU run-time source files. make will handle everything to do with this directory for
you.
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(a) Original domain. (b) One iteration. (c) Two iterations.

Figure 3: Two iterations of Conway’s Game of Life.

visualizer/ Directory for the SkePU trace visualizer. cd into this directory when running the
visualizer, but you do not need to edit files here for the labs.

bin/ Location of the binary files generated by SkePU, but also the generated source files from
source-to-source compilation.

Makefile The main makefile. If you want to add a program (e.g., duplicating an existing one),
add the name to the PROGS list (excluding .cpp extension). This is enough for single-file programs.
If there are additional files (as for the image filters), you need to also add a make recipe as per the
existing ones later in the makefile.

Makefile.in Build parameters specific to the current system. This should already be set up for
the lab rooms. If you want to run the labs somewhere else (not recommended) you will need to
make changes here.

Makefile.include Build options for e.g. generated backends and optimization level. Change the
BACKENDS list to control which backends are generated. You can also enable or disable debug logs
which shows memory allocations and skeleton executions on various backends.

addone.cpp A simple demonstration of SkePU programming. This program uses a Map skeleton
to increment each element of a randomized vector by 1.

dotproduct.cpp Code skeleton for exercise 1.

average.cpp Code skeleton for exercise 2.

median.cpp Code skeleton for exercise 3.

gameoflife.cpp Program for exercise 4.
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trace.json A file with this name will appear after you run a SkePU program. It contains a
high-level execution trace of the last ran program, and is used as input to the trace visualizer.

support.[h cpp], lodepng.[h cpp] Additional source code used by average.cpp and median.cpp
for reading PNG images to SkePU containers.

3.2 Compiling and running

Unpack the lab skeleton on your student account. You might have to make the compiler tool binary
(included among the files) executable, in that case move to the lab directory in a terminal and run
chmod 700 skepu-tool.

To build a program, use make bin/<program name>. For example, make bin/addone.
This will first run the SkePU source-to-source compiler (see the output in the terminal) and

automatically then call g++ on the generated source files.
To run the program, just type bin/<program name> <parameters>.
If you get warnings from the CUDA backend mentioning MapSMtoCores undefined, these will

not affect the lab results.
If you get a message from the OpenCL library about version information at run time, this can

also be ignored.

4 Before the lab session

Before coming to the lab, we recommend you do the following preparatory work

• Familiarize yourselves with SkePU and its syntax, e.g., from the lesson slides.

• Figure out an efficient way to implement the median selection part of the median filter. Hint:
Utilize properties of the domain (we are working with image pixels!).

• Study the questions in the lab compendium and try to come up with reasonable answers or
comments.

5 During the lab session

Take profit of the exclusive access you have to the computer you use in the lab session to perform
the following tasks

• Implement all the parts of the lab and test them thoroughly.

• Measure the performance of your programs when stated in the exercise description.

• Experiment with different problem sizes and backends.
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6 Lab demo

Demonstrate to your lab assistant the following elements:

Show and explain the source code of your programs.

Answer the questions in the lab compendium.

Explain in particular your implementation of the median filter.

Discuss the advantages and disadvantages of high-level parallel programming. Hint: Compare
ease of use, performance, maintainability, portability...

7 Investigate further

Feel fre to use the SkePU tools to experiment with high-level parallel programming. You can for
instance:

• implement a separable edge-detection filter based on average.cpp;

• go back to the topic of lab 1 and generate a Mandelbrot fractal with the Map skeleton and
compare the performance to your lab 1 implementation (is SkePU load-balanced?);

• investigate the Scan skeleton;

• implement low-level variants (e.g., Pthreads) of the algorithms in the lab and compare per-
formance and source code size.
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Appendix A: Separable filters

For assignment 2, you will implement a separable filter. To understand why a 2D filter can be
implemented with 2 1D filters, we have to view the filtering operation as a convolution. A 2D
convolution can be expressed as a series of matrix operations, one for each element in the data.
The filter weights are contained in one matrix, W . The weight matrix is multiplied element-wise
with the matrix containing the overlapping region (O) and the sum of all such products is the
output value. In certain cases (separable filters), the matrix W can be decomposed into vectors
v, w such that W = vwT . In the assignment filters (average and gaussian), we have the additional
property that v = w. The computation can then be split into two steps, first applying w to O,
generating a vector o. The last step is then simply the dot product oT v.

For averaging filter with radius 1, W =

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

 and w =

1/3
1/3
1/3

.

You can check that wwT = W , and that the same is true for the Gaussian filter (mathematically
it is, but the lab skeleton approximates the gaussian weights which introduces a small error).

Appendix B: Setting up and running the visualizer

The SkePU visualizer uses a web server model where the web server component is implemented in
Python using Flask. A few steps are needed to set it up.

1. (First time only) Create a virtual environment inside the visualizer directory.
cd visualizer/

virtualenv venv/

2. We can now activate the virtual environment:
source venv/bin/activate

3. (First time only) Next, we need to install Flask to run the visualization server.
pip install -r requirements.txt

4. Finally, to start the server, we simply run the following:
python visualizer.py

5. Now we have our server up and running, and can access it on the web on the following
localhost URL: http://127.0.0.1:5001. It is recommended to keep the server running in a
dedicated terminal window.

To use the visualizer, we first need to enable tracing in the SkePU runtime. We can do so by
passing the -DSKEPU TRACING=1 flag when compiling (done by default in the lab Makefiles). This
causes the program to generate a trace.json file when it executes. Upload this file along with the
source code for the program to the visualizer.
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