TDDDS56 Multicore and GPU computing
Lab 3: High-level parallelism with skeleton
programming

August

Ernstsson

august.ernstsson@liu.se

December 4, 2019

Contents

T Tniroduch [motivation

1.1 Skeleton programmin

2__Exercises|
2.1 Dot product|
2.2 Averaging filters|

[2.2.1 Separable averaging filter|

[4__Before the lab session|

[S During the lab session|

6 Lab demo

(7 Investigate further|

1 Introduction and motivation

In this lab, you will work with a high-level parallel programming framework. High-level
parallel programming aims to abstract and simplify architecture-specific properties of par-
allel computer systems, and often targets multiple types of parallelism such as either multi-
core CPU or GPU-based systems, or sometimes hybrid execution on both at the same time.
High-level interfaces are also crucial for programming cloud computer systems, for exam-
ple.

In earlier labs you explicitly described in your programs how multiple processor cores
cooperate by using constructs such as threads and locks. The similarities to a sequential
program performing the same task are relatively small. With high-level parallel program-
ming, the goal is to write programs with sequential semantics, that is, there is no explicit
parallelism control in the program code (such as locks). The framework, language, or com-
piler that provides high-level parallelism is instead responsible to extract parallelism from
the sequential semantics in the program. To do this reliably, the functionality offered in the
interface is typically reduced to a selection of common patterns.

1.1 Skeleton programming

Skeleton programming is an approach to high-level parallel programming inspired by func-
tional programming, specifically higher-order functions. In functional programming, oper-
ations on data is typically expressed by functions like map and reduce (or fold), where the
arguments are not only the data to operate on but also the operation itself, as a function ob-
ject. Map and reduce are examples of data parallel skeletons; there also exist task-parallel
skeletons, but those are outside the scope of this lab. In skeleton programming, map and
reduce are examples of skelefons. The function objects are called user functions.

For example, the map operation can accept the data set [1,2,3,4] and the operation
x — x%. The output will be the data set [1,4,9,16]. As each individual element can be
computed independently of the others, this is a prime target for parallelization; in fact, the
map operation is "embarrassingly" parallel. Reduce is not as trivial, but parallelization can
still be done. Given the data set [1, 2, 3, 4] and the operation x,y — x + y, the output will
be 10. Naively summing the data set from left to right will cause sequentialisation due to
the dependencies; however, note that we can compute the partial sums 1 + 2 and 3 + 4
in parallel, even with the final addition improving from three to two time steps in total.
Applying a tree structure like this will make the time complexity logarithmic, assuming
that enough parallelism is available in the hardware.

By performing tree-structured reduction, we assume that the operation is associative,
which is true for addition. This is another example of how high-level parallel frameworks
restrict the interface: non-associative reductions cannot be parallelized in general, so most
frameworks will not accept those. Even with map we made several assumptions, such as
that the operator does not have any observable side effects.

1.2 SkePU

SkePU is a C++ framework for high-level parallel programming implementing the skeleton
programming approach. It is a research tool developed at LiU with support for multi-core
CPU and GPU backends, meaning that the programs can run either on the CPU or a GPU.
SkePU can be made to automatically select which backend to use at runtime, depending
on the operation and data size. To facilitate switching between CPU and GPU, SkePU
implements smart containers which will automatically manage data across the CPU/GPU
boundary in an optimized manner. SkePU supports the following skeletons:

* Map

¢ Reduce

* MapReduce
* Scan
e MapOverlap

As mentioned earlier, skeletons need a user function (i.e., an operator) to be used.
User functions in SkePU are normal C++ functions at first sight, but care has to be taken
when writing these functions. User functions should be self-contained, which means free
functions without external dependencies or side effectﬂ Additionally, the code inside
a user function must not use any C++-specific features (syntax or standard library), the
reason being that SkePU transforms this code to the GPU languages OpenCL and CUDA,
which has C as a least common denominator.

Below is an example of a user function in SkePU.

Listing 1: User function in SkePU

float addOneFunc(float a)
{

return a+1;

}

It is used to instantiate a skeleton like below. The number <1> indicates a unary Map,
that is, elements will be picked from only one container argument later. The use of the
auto type specifier is mandatory, as the actual type of a SkePU skeleton is implementation-
defined.

Listing 2: Skeleton instantiation in SkePU

auto addOneMap = skepu2 ::Map<l>(addOneFunc);

The skeleton is called/applied on SkePU containers like below.

Listing 3: Calling a skeleton instance in SkePU

addOneMap(res, input);

More information about SkePU can be found in the user guide, see the course lab
webpage.

1.3 Backend specification

You can control which backend is used by SkePU by providing a backend specification
(BackendSpec). This is set up in the lab skeleton files by reading a string argument from
the command line:

* CPU for a sequential backend,

* OpenMP for a multi-threaded backend,

* OpenCL for an OpenCL-based GPU backend,

* CUDA for a CUDA-based GPU backend (disabled by default in the labs).

The respective backends needs to be enabled when building the program to work at
run-time. (See Makefile.include).

It is also possible to set parameters for each backend. In the lab, you will only need
to use spec.setCPUThreads (<integer value>) which controls the number of
threads used with the OpenMP backend. If this is not specified, it will use the default from
OpenMP, which tends to be equal to the number of available cores.

IText logging from a user function can be useful for debugging and will work in certain cases.

2 Exercises

The lab consists of three parts:
1. Dot product implementation (warm-up).
2. Averaging blur filter in three variants.

3. Median filtering.

2.1 Dot product

Implement a dot product computation using the MapReduce skeleton in SkePU. Use the
dotproduct . cpp file as a starting point, and look at addone . cpp for inspiration. Re-
member that the AddOne program uses a unary Map (one input vector), while dot product
requires a binary Map (two input vectors). (Where do you specify this?)
Then make another implementation, this time using separate Map and Reduce skele-
tons. You will need to add another Vector container to the program for this. Why?
Compare the performance of your MapReduce and Map + Reduce implementations.
Also compare performance of the MapReduce implementation with different backends.
Choose a suitable vector size for your measurements, so the computation at least takes
on the order of milliseconds to execute. You can also test multiple input sizes.
Question 1.1: Why does SkePU have a "fused" MapReduce when there
already are separate Map and Reduce skeletons?
Hint: Think about memory access patterns.

Question 1.2: Is there any practical reason to ever use separate Map and
Reduce in sequence?

Question 1.3: Is there a SkePU backend which is always more efficient
to use, or does this depend on the problem size? Why? Either show with
measurements or provide a valid reasoning.

2.2 Averaging filters

In this exercise (and the next) you will implement image filters. The filters operate on
Matrix containers with the data-parallel SkePU skeleton MapOverlap, a variant of Map but
where a region of the container is accessible instead of just one element.

Study and test out the averaging filter in average . cpp. For each pixel in the output
image, it computes the average pixel color of the pixels in an surrounding region in the
input image. This produces a rough blurring effect.

Make sure you understand how the MapOverlap skeleton is used to accomplish this
task. The region radius is set inside ma in and appears in the user function as the parameters
ox (x-radius) and oy (y-radius). Note: Use only radius values in the range from 2 to 50.
Note that pixels are represented as three bytes in the matrices, so the overlap will be larger
in the x-dimension. See figure|I|for an illustration of the image as seen by the user function.
There is also the st ride parameter. It is important to understand how this is used when
accessing elements in the region.

2.2.1 Separable averaging filter

Averaging filters have a property known as separability. This means that the two-dimensional
filtering operation can be separated into two one-dimensional filters instead E] SkePU also
supports one-dimensional MapOverlaps over matrices, so your task is to reimplement the

2The average pixel value in the region is also the average value of all the average values for each row.
avgap (region) = avgrows(AVgcolumns (region)). See appendix A for some more motivation.

ox = radius px = 3*radius B

oy = radius px

Figure 1: Memory layout of the image for the 2D filters. The inner white region represents
a pixel in the output image, with the outer white region is the surrounding region in the
input image (the "overlap") Each colored rectangle (subpixel) is one byte of data.

averaging filter in this way. The source file already has a few starting points to help you
out.

Note: The edge pixels of the output will not be exactly the same because of differences
in the edge handling. The "safe" region (inset by the filter radius from the edge) should be
identical, however.

2.2.2 Gaussian filter

The averaging filter results in very rough-looking output images. To make a nicer-looking
blur effect, the Gaussian blur filter has non-uniform pixel weights, so that nearby pix-
els have a larger contribution to the result. Implement a Gaussian filter with your sep-
arable filter as a starting point (but keep them separate in the program). The function
sampleGaussian generates a SkePU Vector of weights (of size 2 x radius + 1, sym-
metric accross the middle).

Question 2.1: Which version of the averaging filter (unified, separable) is
the most efficient? Why?

Question 2.2: Why does SkePU have the st ride parameter in the user
functions for MapOverlap?
Hint: Think about how the image data is stored in memory.

2.3 Median filter

For the last assignment, your task is to implement a median filter with the MapOverlap
skeleton. The median filter works just like an averaging filter, but instead of using the
average pixel value of a region, the output is the median value. The challenge therefore is
to sort the pixels in the region in such a way that the median value can be identified.

Some things to take into consideration:

» SkePU user functions cannot have side effects, so it is not possible to dynamically
allocate memory in one.

(a) Original image. (b) Averaging filter of radius 12.

~

(c) Gaussian filter of radius 12. (d) Median filter of radius 12.

Figure 2: Example output of the image filters.

« It is possible to call other functions from SkePU userfunctions, but you are recom-
mended to avoid that for this assignment.

* Consider the problem domain (pixels) and framework restrictions when implement-
ing the sorting. What sorting algorithms are suitable to use?

Question 3.1: In data-parallel skeletons like MapOverlap, all elements are
processed independently of each other. Is this a good fit for the median
filter? Why/why not?

Question 3.2: Describe the sequence of instructions executed in your user-
function. Is it data dependent? What does this mean for e.g., automatic
vectorization, or the GPU backend?

3 Practicalities

3.1 Lab skeleton structure

This section describes how to use and compile the skeleton source fiels provided and intro-
duce a few key points you need to know.

data/ This directory contains images of various sizes to be used for the filtering exercises.

reference/ Contains reference output of the "Lena" image using the average, gaussian,
and median filters with a radius of 12. See figure [2] Note that the image is in grayscale
(r,g,b channels are equal); you have to make sure your filters handle color images as well.

include/ SkePU run-time source files. make will handle everything to do with this direc-
tory for you.

bin/ Location of the binary files generated by SkePU, but also the generated source files
from source-to-source compilation.

Makefile The main makefile. If you want to add a program (e.g., duplicating an existing
one), add the name to the PROGS list (excluding .cpp extension). This is enough for
single-file programs. If there are additional files (as for the image filters), you need to also
add a make recipe as per the existing ones later in the makefile.

Makefile.in Build parameters specific to the current system. This should already be set
up for the lab rooms. If you want to run the labs somewhere else (not recommended) you
will need to make changes here.

Makefile.include Build options for e.g. generated backends and optimization level. Change
the BACKENDS list to control which backends are generated.

addone.cpp A simple demonstration of SkePU programming. This program uses a Map
skeleton to increment each element of a randomized vector by 1.

dotproduct.cpp Code skeleton for excersise 1.
average.cpp Code skeleton for excersise 2.
median.cpp Code skeleton for excersise 3.

support.[h cpp], lodepng.[h cpp] Additional source code used by average . cpp and
median. cpp for reading PNG images to SkePU containers.

3.2 Compiling and running

To build a program, use make bin/<program name>. Forexample,make bin/mapreduce.
This will first run the SkePU source-to-source compiler (see the output in the terminal)

and automatically then call g++ on the generated source files.
To run the program, just type bin/<program name> <parameters>.
If you get a message from the OpenCL library about verison information at run time:

this can be ignored.

4 Before the lab session

Before coming to the lab, we recommend you do the following preparatory work
 Familiarize youselves with SkePU and its syntax, e.g., from the lesson slides.

* Figure out an efficient way to implement the median selection part of the median
filter. Hint: Utilize properties of the domain (we are working with image pixels!).

 Study the questions in the lab compendium and try to come up with reasonable an-
swers or comments.

S During the lab session

Take profit of the exclusive access you have to the computer you use in the lab session to
perform the following tasks

* Implement all the parts of the lab and test them thoroughly.
* Measure the performance of your programs when stated in the exercise description.

» Experiment with different problem sizes and backends.

6 Lab demo

Demonstrate to your lab assistant the following elements:
1. Show and explain the source code of your programs.
2. Answer the questions in the lab compendium.
3. Explain in particular your implementation of the median filter.
4

Discuss the advantages and disadvantages of high-level parallel programming. Hint:
Compare ease of use, performance, maintainability, portability...

7 Investigate further

Feel fre to use the SkePU tools to experiment with high-level parallel programming. You
can for instance:

 implement a separable edge-detection filter based on average . cpp;

* go back to the topic of lab 1 and generate a Mandelbrot fractal with the Map skele-
ton and compare the performance to your lab 1 implementation (is SkePU load-
balanced?);

* investigate the Scan skeleton;

* implement low-level variants (e.g., Pthreads) of the algorithms in the lab and com-
pare performance and source code size.

Appendix A: Separable filters

For assignment 2, you will implement a separable filter. To understand why a 2D filter can
be implemented with 2 1D filters, we have to view the filtering operation as a convolution.
A 2D convolution can be expressed as a series of matrix operations, one for each element
in the data. The filter weights are contained in one matrix, W. The weight matrix is
multiplied element-wise with the matrix containing the overlapping region (O) and the
sum of all such products is the output value. In certain cases (separable filters), the matrix
W can be decomposed into vectors v, w such that W = vw?. In the assignment filters
(average and gaussian), we have the additional property that v = w. The computation can
then be split into two steps, first applying w to O, generating a vector o. The last step is
then simply the dot product o” v.

1/9 1/9 1/9 1/3
For averaging filter with radius I, W = (1/9 1/9 1/9 | andw = |1/3
1/9 1/9 1/9 1/3
You can check that ww” = W, and that the same is true for the Gaussian filter (math-
ematically it is, but the lab skeleton approximates the gaussian weights which introduces a
small error).

	Introduction and motivation
	Skeleton programming
	SkePU
	Backend specification

	Exercises
	Dot product
	Averaging filters
	Separable averaging filter
	Gaussian filter

	Median filter

	Practicalities
	Lab skeleton structure
	Compiling and running

	Before the lab session
	During the lab session
	Lab demo
	Investigate further

