
TDDD56 Multicore and GPU computing
Lab 1: Load balancing

August Ernstsson, Nicolas Melot
august.ernstsson@liu.se

November 10, 2020

1 Introduction
This laboratory aims to implement a parallel algorithm to generates a visual representation
of the Mandelbrot set similar to Fig. 1. The algorithm we use in this lab work to compute
such picture computes each pixel independently. Since this would allow to process all
pixels in one parallel step, it is called an embarassingly parallel algorithm. However, a
processor has typically much less computing units (cores) available than pixels. Thus, the
entire picture to be computed must be shared among all cores and each core can sequentially
compute its part, while other cores also compute theirs at the same time.

Although the algorithm is embarassingly parallel, one must take great care when dis-
tributing the work, as bad work partitioning can produce parts harder to compute than
others. If all cores receive one part and one part is significantly longer to compute, then
one core will takes more time to run, delaying the completion of the overall algorithm and
leaving other unused. In contrast, if all cores work for the same amount of time on their
part, then available cores are exploited optimally and the runtime of the algorithm is further
reduced.

The work in this lab consists in three parts. First we study the algorithm we use in
order to implement a first parallel version with a naive work partition. Second, we measure
and analyse the performance of this first implementation, and investigate where and why
the computation can be slowed down. The last step consists in programming a smarter
partitionning strategy in order to overcome the difficulties identified in the second step, and
measure the performance improvements.

Figure 1: A representation of the Mandelbrot set (black area) in the range −2≤Cre ≤ 0.6
and −1 ≤ Cim ≤ 1. The pixels in the black area require the full iteration number
MAXIT ER+1.

1

2 Computing 2D representations of the Mandelbrot set
The Mandelbrot set is defined as the set of complex values c, for which the norm of the
Julia sequence ‖an‖ shown in Eq. 1, starting with z = (0,0), is bounded to b ∈ R+∗ with
b > 0 . We can represent the 2D space of a subset of C with a 2D picture. Let us define
the bounds of this subset with Cim

min and Cim
max respectively for the minimum and maximum

multiples of i and Cre
min and Cre

max for the real counterpart. The set we want to represent
is then C∩ ([Cim

min,C
im
max]× [Cre

min,C
re
max]); we call it P. We can attribute each pixels of a 2

dimensional picture, to exactly one point p of P.

{
a0 = z
an+1 = a2

n + c,∀n ∈ {∀x ∈ N : n 6= 0}
(1)

In order to give each pixel a color, we need to determine if its corresponding point
p is included in the Mandelbrot set. The algorithm depict in Fig. 2 computes the Julia
sequence starting at z = (0,0) and returns the number of iterations n it ran before detecting
the sequence diverges. If n is below a maximum constant MAXIT ER, then we consider p
is not included in the Mandelbrot set and we give it a color depending on p; otherwise, the
pixel is colored in black.

Note that this algorithm is an approximation: if the Julia sequence with c = p diverges
very slowly, then a constant number of iteration may not be enough to generate a divergence
greater than MAXDIV . In this case, p is assumed to be part of the Mandelbrot set, whereas
it is not. On the other hand, if MAXIT ER is too high or if MAXDIV is too low, then the
algorithm may detect a divergence where the sequence only varies toward a convergence.
Then p would not be accounted as part of the Mandelbrot set even if it should be. for a
given value of MAXDIV , a high value for MAXIT ER makes the decision more reliable,
but it also makes the cores to run more iterations before “giving-up” and consider p as part
of the Mandelbrot set.

3 Getting started

3.1 Installation
Fetch the lab 1 skeleton source files from the CPU lab page and extract them to your
personal storage space. We strongly recommend using Git or a similar tool to manage
your lab source code.

3.2 Source file skeleton
This section describes how to use and compile the skeleton source fiels provided and intro-
duce a few key points you need to know.

3.2.1 Compiling and running

The skeleton can be compiled in three different modes you can enable or disable by passing
variables when calling make:

Debugging: This mode makes the executable to compute one picture and store it in man-
delbrot.ppm. You can use this mode and tweak other variables to make sure the algorithm
runs, terminates and produces the expected result. Just call make without passing any vari-
able, or only variables to tweak the algorithm.

2

i n t
i s _ i n _ M a n d e l b r o t (f l o a t Cre , f l o a t Cim)
{

i n t i t e r ;
f l o a t x = 0 . 0 , y = 0 . 0 , x to2 = 0 . 0 , y to2 = 0 . 0 , d i s t 2 ;

f o r (i t e r = 0 ; i t e r <= MAXITER; i t e r ++)
{

y = x * y ;
y = y + y + Cim ;
x = x to2 − y to2 + Cre ;
x to2 = x * x ;
y to2 = y * y ;

d i s t 2 = x to2 + y to2 ;

i f ((i n t) d i s t 2 >= MAXDIV)
{

break ; / / c o n v e r g e s t o i n f i n i t y
}

}
re turn i t e r ;

}

Figure 2: A C function to decide whether the complex number belongs to the Mandelbrot
set, returning the number of iterations necessary to take the decision.

Measuring: This makes the executable to compute one picture and quit without saving
it. It also makes the program to check time (in seconds and nanoseconds) before and after
computating, and display these values on the terminal after completion and before exiting.
This mode is used by batch and plotting scripts to generate many values, analyse and plot
them. You can also use these numbers if you want to interpret them yourself. Call make
with the variable MEASURE set to any value (make MEASURE=1).

Make can also take other useful options through other variables passing:

NB_THREADS: Call make with NB_T HREADS = n make ... NB_THREADS=n where
n is a non-negative integer. It instructs make to compile a multithreaded version running n
threads. If n = 0 then it compiles a sequential version. If n = 1, then it compile a parallel
version in which only one thread runs.

LOADBALANCE: Call make with LOADBALANCE = n make ... LOADBALANCE=n
where n ∈ [0,1,2]. It selects and compile one load-balancing method among no load-
balancing (0), your load-balancing method (1) and an optional additional load-balancing
method (2).

Browse the file Makefile to find out more variables you can use to tweak your algorithm.
You can modify the maximum amount of iterations, you can move P in C, you can change
the size of the picture to generate and you can provide another color to represent points in
the Mandelbrot set (black by default).

3

3.2.2 Structure

The skeleton provides an sequential implementation of the algorithm described in sec.2. It
is divided in the four source files mandelbrot_main.c, mandelbrot.c, ppm.c and gl_mandelbrot.c
with their associated header files.

mandelbrot_main.c The program starts here. Depending on the options you passed to
make, it computes and maybe stores a picture, or it starts the opengl engine.

mandelbrot.c This is the only file you need to modify. At initialization time, it spawns by
itself all threads you instructed to use at compile time. Whatever running mode, whatever
amount of threads you use, computation is always started by a call to compute_mandelbrot(...).
Depending on the number of threads, this runs directly sequential_mandelbrot(...) or it re-
leases all threads which, each of them individually, run parallel_mandelbrot(...). The
implementation uses function is_in_mandelbrot(...) to check if a complex number is in the
mandelbrot set and compute_chunk() to compute the whole picture or a region of it, de-
pending on the values of parameters parameters− > begin_h and parameters− > end_h
for height (respectively begin and end) and parameters− > begin_w and parameters− >
end_w.

By default, one call to parallel_mandelbrot(...) computes nothing. The function ad-
mits as parameters args and param. args→ id gives the thread id, from 0 to NB_T HREADS−
1. The parameter param points to a structure from which you can get the dimension of the
picture to compute (height, width), the maximum amount of iterations (maxiter), the color
for the Mandelbrot set (mandelbrot_color, black by default), the bounds defining the sub-
set P of C matching the picture (lower_r, upper_r, lower_i, upper_i, respectivey for Cre

min,
Cre

max, Cim
min and Cim

max) and a pointer to the ppm data structure holding all pixels (see ppm.h).
Note that the function init_round(...) is garanteed to run by each thread and return before
any thread begin to run parallel_mandelbrot(...). It is a preferred place to implement
initializations for any shared resource your threads may use.

ppm.c This file holds all functions required to manipulate ppm files. You need to store
pixels in the args→ picture, using ppm_write(args→ picture,x,y,color) to give a color
to pixel of coordinates (x,y) and where color is an instance of the structure color, a triplet
of three values for red, blue and green intensities (see ppm.h). You can pick a color in
the global variable color and extract its RGB components using shifts (<< 0,8or16) and
bitwise AND. All this work is already implmented in compute_chunk(...) of mandelbrot.c.

gl_mandelbrot.c This file includes all necessary code to run the OpenGL animation. You
don’t need to browse this code for the lab work. Note: OpenGL visualization may not
work using a remote shell. If you want to try it, compile with make GLUT=1.

4 Before the lab session
Before coming to the lab, we recommend you do the following preparatory work

• Write a detailed explanation why computation load can be imbalanced and how it
affects the global performance.
Hint: What is necessary to compute a black pixel, as opposed to a colored pixel?

• Describe different load-balancing methods that would help reducing the performance
loss due to load-imbalance. You should be able to come up with at least two.
Hint: Observe that the load-balancing method must be valid for a

¯
ny picture com-

puted, not only the default picture.

4

• Implement all the algorithms required in sections 5 and 6 ahead of the lab session
scheduled, so you can measure their performance during lab sessions. Use the pre-
processor symbol LOADBALANCE to take decision to use either no load-balancing
or one or several load-balancing methods (the helper scripts assume a value of 0 for
no load-balancing and 1 and 2 for two different load-balancing methods). This value
is known at compile time and can be handled using preprocessor instructions such as
#if-#then-#else; see the skeleton for example.

• Consider ways to further optimize your solution which might be outside of the lab
scope (e.g., using advanced tricks taught in lectures).

• Think about how well your solutions generalize to other use-cases (task-based paral-
lelization in general) and if not, how they could be adapted for this purpose. (Only a
thought-experiment, no implementation.)

5 During the lab session
Take profit of the exclusive access you have to the computer you use in the lab session to
perform the following tasks

• Measure the performance of the naive parallel implementation (naive partitioning
shown in Fig. 4 and generate a graph showing execution time as a function of number
of threads involved.
Hint: You will observe more easily the load-imbalance effects if you generate only
pictures of the Mandelbrot set in the range Cre ∈ [−2;+0.6] and Cim ∈ [−1;+1]. We
suggest to generate a picture of 500×375 pixels, using a maximum of 256 iterations.
You are encouraged to change these parameters if this helps you to have a better
understanding of the problem or to find a solution.

• Measure the performance of the load-balanced variant and produce a graph featuring
both load-balanced and load-imbalanced global execution time curves.

6 Lab demo
Demonstrate to your lab assistant the following elements:

1. Show the performance (execution time) as a function of number of threads measured
on the naive parallel algorithm, through a clear diagram.

2. Explain the reason why some threads get more work than others.

3. Explain the load-balancing strategies you implemented and argue why it helps im-
proving performance. You should have two different approaches that both are im-
provements to the naive algorithm. Hint: Consider using one static approach and
one dynamic approach. What are the fundamental differences, and what approach
best fits to describe the naive algorithm?

4. Show the performance of your load-balanced versions and compare them to the naive
parallel algorithm. Explain the reason of performance differences.

5

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s

Number of threads employed

Global computation time for unbalanced threads

Unbalanced

Figure 3: Performance of an unbalanced implementation. The computation time does not
lower accordingly with the increasing number of threads.

Figure 4: A naive partition for the computation of the representation of a Mandelbrot sub-
set. Every thread receives an equally big subarea of the global picture to compute.

6

	Introduction
	Computing 2D representations of the Mandelbrot set
	Getting started
	Installation
	Source file skeleton
	Compiling and running
	Structure

	Before the lab session
	During the lab session
	Lab demo

