
TDDD56 Multicore and GPU computing

Lab 1: Load balancing

August Ernstsson, Nicolas Melot

august.ernstsson@liu.se

November 12, 2018

1 Introduction

This laboratory aims to implement a parallel algorithm to generates a visual representation

of the Mandelbrot set similar to Fig. 1. The algorithm we use in this lab work to compute

such picture computes each pixel independently. Since this would allow to process all

pixels in one parallel step, it is called an embarassingly parallel algorithm. However, a

processor has typically much less computing units (cores) available than pixels. Thus, the

entire picture to be computed must be shared among all cores and each core can sequentially

compute its part, while other cores also compute theirs at the same time.

Although the algorithm is embarassingly parallel, one must take great care when dis-

tributing the work, as bad work partitioning can produce parts harder to compute than

others. If all cores receive one part and one part is significantly longer to compute, then

one core will takes more time to run, delaying the completion of the overall algorithm and

leaving other unused. In contrast, if all cores work for the same amount of time on their

part, then available cores are exploited optimally and the runtime of the algorithm is further

reduced.

The work in this lab consists in three parts. First we study the algorithm we use in

order to implement a first parallel version with a naive work partition. Second, we measure

and analyse the performance of this first implementation, and investigate where and why

the computation can be slowed down. The last step consists in programming a smarter

partitionning strategy in order to overcome the difficulties identified in the second step, and

measure the performance improvements.

Figure 1: A representation of the Mandelbrot set (black area) in the range −2 ≤Cre ≤ 0.6

and −1 ≤ Cim ≤ 1. The pixels in the black area require the full iteration number

MAXIT ER+1.

1

2 Computing 2D representations of the Mandelbrot set

The Mandelbrot set is defined as the set of complex values c, for which the norm of the

Julia sequence ‖an‖ shown in Eq. 1, starting with z = (0,0), is bounded to b ∈ R
+∗ with

b > 0 . We can represent the 2D space of a subset of C with a 2D picture. Let us define

the bounds of this subset with Cim
min and Cim

max respectively for the minimum and maximum

multiples of i and Cre
min and Cre

max for the real counterpart. The set we want to represent

is then C∩ ([Cim
min,C

im
max]× [Cre

min,C
re
max]); we call it P. We can attribute each pixels of a 2

dimensional picture, to exactly one point p of P.

{

a0 = z

an+1 = a2
n + c,∀n ∈ {∀x ∈ N : n 6= 0}

(1)

In order to give each pixel a color, we need to determine if its corresponding point

p is included in the Mandelbrot set. The algorithm depict in Fig. 2 computes the Julia

sequence starting at z = (0,0) and returns the number of iterations n it ran before detecting

the sequence diverges. If n is below a maximum constant MAXIT ER, then we consider p

is not included in the Mandelbrot set and we give it a color depending on p; otherwise, the

pixel is colored in black.

Note that this algorithm is an approximation: if the Julia sequence with c = p diverges

very slowly, then a constant number of iteration may not be enough to generate a divergence

greater than MAXDIV . In this case, p is assumed to be part of the Mandelbrot set, whereas

it is not. On the other hand, if MAXIT ER is too high or if MAXDIV is too low, then the

algorithm may detect a divergence where the sequence only varies toward a convergence.

Then p would not be accounted as part of the Mandelbrot set even if it should be. for a

given value of MAXDIV , a high value for MAXIT ER makes the decision more reliable,

but it also makes the cores to run more iterations before “giving-up” and consider p as part

of the Mandelbrot set.

3 Getting started

3.1 Installation

Fetch the lab 1 skeleton source files from the CPU lab page and extract them to your

personal storage space. We strongly recommend using Git or a similar tool to manage

your lab source code.

3.2 Source file skeleton

This section describes how to use and compile the skeleton source fiels provided and intro-

duce a few key points you need to know.

3.2.1 Compiling and running

The skeleton can be compiled in three different modes you can enable or disable by passing

variables when calling make:

Debugging: This mode makes the executable to compute one picture and store it in man-

delbrot.ppm. You can use this mode and tweak other variables to make sure the algorithm

runs, terminates and produces the expected result. Just call make without passing any vari-

able, or only variables to tweak the algorithm.

2

i n t

i s _ i n _ M a n d e l b r o t (f l o a t Cre , f l o a t Cim)

{

i n t i t e r ;

f l o a t x = 0 . 0 , y = 0 . 0 , x to2 = 0 . 0 , y to2 = 0 . 0 , d i s t 2 ;

f o r (i t e r = 0 ; i t e r <= MAXITER; i t e r ++)

{

y = x * y ;

y = y + y + Cim ;

x = x to2 − y to2 + Cre ;

x to2 = x * x ;

y to2 = y * y ;

d i s t 2 = x to2 + y to2 ;

i f ((i n t) d i s t 2 >= MAXDIV)

{

break ; / / c o n v e r g e s t o i n f i n i t y

}

}

re turn i t e r ;

}

Figure 2: A C function to decide whether the complex number belongs to the Mandelbrot

set, returning the number of iterations necessary to take the decision.

Measuring: This makes the executable to compute one picture and quit without saving

it. It also makes the program to check time (in seconds and nanoseconds) before and after

computating, and display these values on the terminal after completion and before exiting.

This mode is used by batch and plotting scripts to generate many values, analyse and plot

them. You can also use these numbers if you want to interpret them yourself. Call make

with the variable MEASURE set to any value (make MEASURE=1).

Showing off: The executable runs an OpenGl anymation where a camera zooms and

unzoom, jumping randomly from a pre-defined point to another. You can press “h” in the

main window to get some help on how to control it. Press “b” to stop jumping and use

the mouse to browse it yourself: left-click to slide in any direction, right-click plus moving

the mouse up to zoom in and right-click plus move down to unzoom. Call make with

the variable GLUT set to 1 (make GLUT=1); note that the variable MEASURE preempts

GLUT .

Make can also take other useful options through other variables passing:

NB_THREADS: Call make with NB_T HREADS = n make ... NB_THREADS=n where

n is a non-negative integer. It instructs make to compile a multithreaded version running n

threads. If n = 0 then it compiles a sequential version. If n = 1, then it compile a parallel

version in which only one thread runs.

LOADBALANCE: Call make with LOADBALANCE = n make ... LOADBALANCE=n

where n ∈ [0,1,2]. It selects and compile one load-balancing method among no load-

3

balancing (0), your load-balancing method (1) and an optional additional load-balancing

method (2).

Browse the file Makefile to find out more variables you can use to tweak your algorithm.

You can modify the maximum amount of iterations, you can move P in C, you can change

the size of the picture to generate and you can provide another color to represent points in

the Mandelbrot set (black by default).

3.2.2 Structure

The skeleton provides an sequential implementation of the algorithm described in sec.2. It

is divided in the four source files mandelbrot_main.c, mandelbrot.c, ppm.c and gl_mandelbrot.c

with their associated header files.

mandelbrot_main.c The program starts here. Depending on the options you passed to

make, it computes and maybe stores a picture, or it starts the opengl engine.

mandelbrot.c This is the only file you need to modify. At initialization time, it spawns by

itself all threads you instructed to use at compile time. Whatever running mode, whatever

amount of threads you use, computation is always started by a call to compute_mandelbrot(...).
Depending on the number of threads, this runs directly sequential_mandelbrot(...) or it re-

leases all threads which, each of them individually, run parallel_mandelbrot(...). The

implementation uses function is_in_mandelbrot(...) to check if a complex number is in the

mandelbrot set and compute_chunk() to compute the whole picture or a region of it, de-

pending on the values of parameters parameters− > begin_h and parameters− > end_h

for height (respectively begin and end) and parameters− > begin_w and parameters− >

end_w.

By default, one call to parallel_mandelbrot(...) computes nothing. The function ad-

mits as parameters args and param. args→ id gives the thread id, from 0 to NB_T HREADS−
1. The parameter param points to a structure from which you can get the dimension of the

picture to compute (height, width), the maximum amount of iterations (maxiter), the color

for the Mandelbrot set (mandelbrot_color, black by default), the bounds defining the sub-

set P of C matching the picture (lower_r, upper_r, lower_i, upper_i, respectivey for Cre
min,

Cre
max, Cim

min and Cim
max) and a pointer to the ppm data structure holding all pixels (see ppm.h).

Note that the function init_round(...) is garanteed to run by each thread and return before

any thread begin to run parallel_mandelbrot(...). It is a preferred place to implement

initializations for any shared resource your threads may use.

ppm.c This file holds all functions required to manipulate ppm files. You need to store

pixels in the args → picture, using ppm_write(args → picture,x,y,color) to give a color

to pixel of coordinates (x,y) and where color is an instance of the structure color, a triplet

of three values for red, blue and green intensities (see ppm.h). You can pick a color in

the global variable color and extract its RGB components using shifts (<< 0,8or16) and

bitwise AND. All this work is already implmented in compute_chunk(...) of mandelbrot.c.

gl_mandelbrot.c This file includes all necessary code to run the OpenGl animation. You

don’t need to browse this code for the lab work.

4 Before the lab session

Before coming to the lab, we recommend you do the following preparatory work

4

• Write a detailed explanation why computation load can be imbalanced and how it

affects the global performance.

Hint: What is necessary to compute a black pixel, as opposed to a colored pixel?

• Describe a load-balancing method that would help reducing the performance loss

due to load-imbalance.

Hint: Observe that the load-balancing method must be valid for a
¯

ny picture com-

puted, not only the default picture.

• Implement all the algorithms required in sections 5 and 6 ahead of the lab session

scheduled, so you can measure their performance during lab sessions. Use the pre-

processor symbol LOADBALANCE to take decision to use either no load-balancing

or one or several load-balancing methods (the helper scripts assume a value of 0 for

no load-balacing and 1 and 2 for two different load-balancing methods). This value

is known at compile time and can be handled using preprocessor instructions such as

#if-#then-#else; see the skeleton for example.

5 During the lab session

Take profit of the exclusive access you have to the computer you use in the lab session to

perform the following tasks

• Measure the performance of the naive parallel implementation (naive partitioning

shown in Fig. 4 and generate a graph showing execution time as a function of number

of threads involved.

Hint: You will observe more easily the load-imbalance effects if you generate only

pictures of the Mandelbrot set in the range Cre ∈ [−2;+0.6] and Cim ∈ [−1;+1]. We

suggest to generate a picture of 500×375 pixels, using a maximum of 256 iterations.

You are encouraged to change these parameters if this helps you to have a better

understanding of the problem or to find a solution.

• Measure the performance of the load-balanced variant and produce a graph featuring

both load-balanced and load-imbalanced global execution time curves.

6 Lab demo

Demonstrate to your lab assistant the following elements:

1. Show the performance (execution time) as a function of number of threads measured

on the naive parallel algorithm, through a clear diagram.

2. Explain the reason why some threads get more work than others

3. Explain the load-balancing strategy you implemented and argue why it helps improv-

ing performance

4. Show the performance of your load-balanced version and compare it to the naive

parallel algorithm. Explain the reason of performance differences.

7 Investigate further

You can investigate further the load-imbalance issue when computing the Mandelbrot set.

We suggest the following tasks

5

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8

T
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s

Number of threads employed

Global computation time for unbalanced threads

Unbalanced

Figure 3: Performance of an unbalanced implementation. The computation time does not

lower accordingly with the increasing number of threads.

Figure 4: A naive partition for the computation of the representation of a Mandelbrot sub-

set. Every thread receives an equally big subarea of the global picture to compute.

• Training for exam: Provide a performance analysis of the sequential Mandelbrot

generator, using the big O notation. Analyze the naive parallel version and give

speedup and efficiency.

• Training for exam: Analyze the load-balanced parallel variant using the big O nota-

tion. Compare with the naive parallel version analysis.

• Just for fun: Update the function update_colors (mandelbrot.c, line 210) to generate

other fancy colors for the fractal.

8 Lab rooms

During the laboratory sessions, you have priority in rooms “Signal- och Bildlabbet” and

“Multicore Lab” in the B building. See below for information about these rooms:

8.1 Multicore Lab (IDA)

• Intel®Xeon™ X56601

– 6 cores

– 2.80GHz

• 6 GiB RAM

8.2 Signal- och Bildlabbet (ISY)

• Intel®Xeon™ CPU W-21452

1https://ark.intel.com/products/47921/Intel-Xeon-Processor-X5660-12M-Cache-2-80-GHz-6-40-GT-s-Intel-

QPI-
2https://ark.intel.com/products/126707/Intel-Xeon-W-2145-Processor-11M-Cache-3-70-GHz-

6

– 8 cores

– 3.70GHz

• 16 GiB RAM

Note: The computers in these labs are made available specifically for this course and

might not be connected to the central IDA file systems. We strongly encourage that you

store your work-in-progress remotely, either on a GitLab repository (preferred if you know

how to use Git) or on a USB storage device. Git also gives benefits for version tracking and

collaboration.

7

	Introduction
	Computing 2D representations of the Mandelbrot set
	Getting started
	Installation
	Source file skeleton
	Compiling and running
	Structure

	Before the lab session
	During the lab session
	Lab demo
	Investigate further
	Lab rooms
	Multicore Lab (IDA)
	Signal- och Bildlabbet (ISY)

