Link6pings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDD56
Multicore and GPU Programming

14 jan 2016, 14:00-18:00, U6, U7, U10, U11

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00.
Ingemar Ragnemalm (070-6262628), visiting ca. 16:00.

Hja lpmedel / Admitted material:
— Engelsk ordbok / Dictionary from English to your native language

General instructions

e This exam has 9 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

e It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

e You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

e Write clearly. Unreadable text will be ignored.

e Be precise in your statements. Unprecise formulations may lead to a reduction of points.
e Motivate clearly all statements and reasoning.

e Explain calculations and solution procedures.

e The assignments are not ordered according to difficulty.

e The exam is designed for 40 points. You may thus plan about 5 minutes per point.

e Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

e An exam review session will be announced on the course homepage.

1. (4 p.) Multicore Architecture Concepts

(a) Define and explain the following technical terms:

i. SIMD parallelism

ii. (Cache) capacity miss
iii. Sequential (memory) consistency
iv. Heterogeneous multicore system

(Remember that an example is not a definition. Be general and thorough.) (4p)

2. (6.5 p.) Design and Analysis of Parallel Algorithms

(a) Formulate Brent’s Theorem (explained formula), give its interpretation, derive it
(proof), and describe its implications for parallel algorithm design and analysis.
(3p)

(Hint: Make sure to properly introduce all symbols used and explain their meaning.)

(b) (3p) In the lecture, we introduced list-ranking as a fundamental computational prob-
lem on a shared array containing N list items that belong to one or several linked
lists. The simplest scenario considered was calculating, for each list item, a pointer
to the end of its list.

o N\ /v

[_ I -
/) / g

"

(1) For this problem scenario, describe (pseudocode) and explain the recursive pointer
doubling based algorithm using /N parallel threads, as introduced in the lecture, and
derive its asymptotic parallel time, work and cost complexity (in terms of V). (3p)

(11) What kind of parallelism is exploited here? (0.5p)

(c) Bonus question (+1.5p): Is this pointer-doubling algorithm work-optimal? Explain
why or why not (NB a simple yes/no answer gives no points).

(Hint: This requires that you have solved the previous question correctly. For the
answer you may remember your course on data structures and algorithms...)

3. (3.5 p.) Parallel Programming with Threads and Tasks

(a) What does thread pinning mean, and what is its purpose? (1.5p)
(b) How does a work-stealing task scheduler work? (2p)

4. (7 p.) Non-blocking Synchronization

(a) Inthe lecture, we considered a fair lock implementation using the atomic FetchAndIncr
operation:

// two shared counters, statically initialized to O:
shared int ticket = 0; // next waiting ticket to grab
shared int active = 0; // ticket now entitled to enter CS

void acquire () // acquire fair lock:
{
int myticket = FetchAndIncr(&ticket, 1);
while (myticket != active)
; // busy waiting

void release () // release fair lock:
{
active ++;

}

(This implementation assumes a sequentially consistent memory.)

(i) The busy-waiting while loop above contains a potential performance issue on
standard (cache-based, sequentially consistent) multicore CPUs. Explain why, and
describe one possible workaround. (2p)

(i1) You are now given a multicore processor that has no atomic fetch_and_increment
instruction but that has a compare_and_swap (CAS) instruction instead. Rewrite
the above fair lock implementation using CAS such that the behavior is the same.
Explain your solution. (2.5p)

(b) Can the ABA problem occur in your CAS-based implementation of the fair lock?
Explain why or why not. If yes, how likely is it to occur? Motivate your answer.

(2p)

(¢) Do you know another kind of hardware atomic operation that can be used as an
alternative to CAS and that does not suffer from the ABA problem? (technical term
only, no details) (0.5p)

[In case of questions about the following 3 assignments, ask I. Ragnemalm in the first hand.]

5. (5 p.) GPU Algorithms and Coding

Write code/pseudocode for computing a 2-dimensional color image filter of size 5 X
5 pixels in a reasonably optimized way. Clearly describe what optimizations you do
and why. The filter weights should be specified (i.e. a 5 X 5 matrix), and should be
normalized properly. Full score requires a close-to-real-code solution taking more than
one optimization technique into account. You may use CUDA-style syntax or OpenCL-
style syntax as you please.

6. (5 p.) GPU Conceptual Questions

(a) Describe how Bitonic Merge Sort can be implemented on a GPU. A figure to clarify
the algorithm is expected. Your solution must be able to handle large data sets (i.e.
100000 items or more). (3p)

(b) Describe how reduction can be used to calculate the maximum value of a large array
of scalar values on a GPU.
Also give at least two examples of other problems that are solved by reduction. (2p)

7. (5 p.) GPU Quickies

(a) In CUDA, you can use the modifier __host__. What does this signify? (1p)
(b) What kind of algorithms benefit from using constant memory? (1p)

(c) Compare OpenCL and Compute Shaders in terms of portability. You should know
at least one strong point of each. (1p)

(d) Imagine a CUDA programmer who uses the practice to always use as big block size
as possible. Why will this not always result in the highest possible performance?
(Ip)

(e) In graphics, data is always input as geometrical shapes. What geometry is usually
used for fragment shader based GPU computing? (1p)

8. (3 p.) Optimization and Parallelization

(a) Name and shortly describe two different loop transformations that can improve the
cache hit rate of a loop, and explain why. (3p)

9. (1 p.) Parallel algorithmic design patterns and High-level parallel programming

Give two main advantages and two main drawbacks of skeleton-based parallel program-
ming. (1p)

Good luck!

