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General instructions

• This exam has 7 assignments and 6 pages, including this one.
Read all assignments carefully and completely before you begin.

• It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

• You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements. Unprecise formulations may lead to a reduction of points.

• Motivate clearly all statements and reasoning.

• Explain calculations and solution procedures.

• The assignments are not ordered according to difficulty.

• The exam is designed for 40 points. You may thus plan about 5 minutes per point.

• Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.
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1. (8 p.) Multicore Architecture Concepts

(a) What is the power wall in (single-core) processor architecture, and why does it lead
to the development of multicore architectures? Give a quantitative argument. (2p)

(b) Define and explain the following technical terms:

i. SIMD (vector) instructions
ii. Moore’s Law

iii. Cache coherence
iv. Bus snooping
v. Weak memory consistency (in a shared memory system)

(Remember that an example is not a definition. Be general and thorough.) (5p)

(c) What is the purpose of multi-banked memory? (1p)

2. (7 p.) Non-blocking Synchronization

(a) Name 2 problems of lock-based synchronization that are removed by non-blocking
synchronization. (1p)

(b) In a doubly linked list, each list element has two pointers, prev and next, that
point to the preceding and subsequent list element respectively. For a multithreaded
execution environment (e.g., pthreads), give a thread-safe solution using ordinary
mutex locks (pseudocode) to protect concurrent insertion of elements into a doubly
linked list in shared memory. (0.5p)
Give a simple argument (sketch of a scenario) that concurrent insertion without the
mutex protection can lead to an incorrect result. (0.5p)

(c) Assume now that you are given a multicore processor that provides a double-word
compare and swap (DCAS) instruction:

int DCAS( struct ddescr * pd );

where the DCAS descriptor stored in thread-local memory, referenced by pd, has
the following structure:

struct ddescr {
word *ptr1, *ptr2; // pointers to two shared memory locations
word old1, old2, new1, new2; // old and new values for these
word res; // error code

}

If the DCAS instruction applied to pd succeeds, its effect is the same as two (suc-
cessful) simultaneous CAS (compare-and-swap) operations CAS(ptr1,old1,new1)
and CAS(ptr2,old2,new2) executed atomically, and it returns 0 (no error).
If either of the two CAS operations cannot be committed, both will not take effect,
and the DCAS instruction returns an error code.
Write a non-blocking implementation (pseudocode) of concurrent insertion in a
doubly linked list, using DCAS instead of locks. Explain your code.
Explain how your solution will handle cases of conflicting concurrent insertions
(see your counterexample in the previous question) correctly. (4p)
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(d) Give an example scenario of the ABA problem (in the context of CAS operations).
(1p)
Hint: You might use the above linked list scenario or create your own one.

3. (7 p.) Design and Analysis of Parallel Algorithms
Karatsuba Polynomial Multiplication (here, just for binary numbers)

Consider the problem of multiplying two very large binary numbers x = 〈x0, ..., xn−1〉
and y = 〈y0, ..., yn−1〉 given as bitvector arrays.

The (sequential) school method for this is to separately multiply x with each bit yi, shifted
by i positions, and adding up these partial products, resulting in an algorithm with O(n2)
work. But we can do better.

We can write x = x(1)·2n/2+x(0) where x(0) = 〈x0, ..., xn/2−1〉 and x(1) = 〈xn/2, ..., xn−1〉,
and y = y(1) · 2n/2 + y(0) accordingly. Then,

x · y = (x(1) · 2n/2 + x(0))(y(1) · 2n/2 + y(0))

= x(1)y(1) · 2n +
(
x(1)y(0) + x(0)y(1)

)
· 2n/2 + x(0)y(0).

This reduces the problem of one length-n multiplication to, for now, four length-n/2
multiplications.

Now we know that (x(1) + x(0))(y(1) + y(0)) = x(1)y(1) + x(1)y(0) + x(0)y(1) + x(0)y0.
Hence,

x(1)y(0) + x(0)y(1) = (x(1) + x(0))(y(1) + y(0))− x(1)y(1) − x(0)y(0))

which we insert above and obtain

x · y = x(1)y(1) · 2n + ((x(1) + x(0))(y(1) + y(0))− x(1)y(1) − x(0)y(0)) · 2n/2 + x(0)y(0).

Of course we compute M1 = x(1)y(1) and M2 = x(0)y(0) only once, so that we can get
it done with three length-n/2 multiplications and some length-n additions (the latter of
which can be done in linear time). The pseudocode is thus:

Algorithm Multiply ( array x[0..n− 1], y[0..n− 1] )

returns array z[0..2n− 1]

{
if n is small (≤ some constant C) then multiply x, y directly and return xy

else
Set x(0), x(1) such that x = x(1) · 2n/2 + x(0);

Set y(0), y(1) such that y = y(1) · 2n/2 + y(0);

M1 ← Multiply(x(1), y(1));

M2 ← Multiply(x(0), y(0));

M3 ← Multiply(x(0) + x(1), y(0) + y(1));

return M1 · 2n + (M3 −M1 −M2) · 2n/2 +M2;

fi

}
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(a) Which fundamental algorithmic design pattern is used in the Multiply algorithm?
(0.5p)

(b) Analyze the sequential time complexity of the Multiply algorithm for a problem
size n. Assume that length-n additions and subtractions can be done in time Θ(n).
Assume that a direct multiplication for ”small” constant n (e.g., for n = 1) takes
constant time. (1p)

(c) Identify which calculations could be executed in parallel, and sketch a parallel Mul-
tiply algorithm in pseudocode (shared memory). (1p)

(d) Analyze your parallel Multiply algorithm for its parallel execution time, parallel
work and parallel cost (each as a function in n, using big-O notation) for a problem
size n using n processors. Assume that length-n additions and subtractions can be
done in time Θ(n) and can be parallelized perfectly across up to n threads. Assume
that a direct multiplication for ”small” n (e.g., n = 1) takes constant time.
(A solid derivation of the formulas is expected; just guessing the right answer gives
no points.) (3p)

(e) How would you adapt the algorithm to work for a fixed number p of processors?
What will then be its parallel time with p processors? (1.5p)

(Hint: F (n) ≤ kF (n/b) + cn and F (C) ∈ O(1) =⇒ F (n) ∈ O(nlogb k + n), for
constants c, C > 0.)

(Hint: If not otherwise possible, you may answer the above questions for the school
method, with half the points.)
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[In case of questions about the following 3 assignments, ask I. Ragnemalm in the first hand.]

4. GPU Algorithms (5p)

A histogram is an array h that records for each possible (integer) value the number of its
occurrences in a large integer-valued data structure, e.g., an array a. It can be computed
like this:

for all elements i in a[] do
h[a[i]] += 1

(a) With what feature can this algorithm be made to run in parallel in CUDA? (1p)

(b) Suggest a different approach that should give good (better) performance and does
not rely on this feature (written in ”plain” CUDA, OpenCL or shaders). (2p)

(c) Write this algorithm in CUDA or OpenCL code. (Minor syntax errors are ignored.)
(2p)

5. GPU Architecture Concepts (5p)

(a) Describe the major architectural differences between a multi-core CPU and a GPU
(apart from the GPU being tightly coupled with image output). Focus on the differ-
ences that are important for parallel computing. (3p)

(b) Compare shared memory, global memory and register memory in terms of perfor-
mance, usage and accessibility. CUDA terminology is assumed, please note if you
use OpenCL terminology. (2p)

6. GPU Quickies (5p; 1p each)

(a) Why is the G80 so much faster than the previous GPUs (e.g. 7000 series)?

(b) Why can using constant memory improve performance?

(c) What kind of shaders is most interesting for GPU computing? (What part of the
pipeline?)

(d) What geometry is usually used for shader-based GPU computing?

(e) List three different kinds of hardware that OpenCL runs on. (Similar systems by
different vendors count as one.)
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7. (3 (+2) p.) Optimization and Parallelization

(a) Consider the following sequential loop:

#define N 100000
double x[N]; // array of double precision floats
...
for (i=8; i<N; i++) {

x[i] = veryexpensivefunction( x[i-8] );
}

i. Can the above for loop be simply rewritten into a parallel forall loop?
Give a formal argument. (1p)

ii. Bonus question (optional): Suggest a method to parallelize the computation
as far as possible.
(Hint: Assume shared memory and a multithreaded execution environment.
Draw the iteration dependence graph. Consider only parallelism, ignore pos-
sible cache performance problems for now. Assume that the time taken by
veryexpensivefunction is large but independent of its argument. Do
you need special synchronization?)
Show the resulting pseudocode. How much speedup can you expect in the best
case? (+2p)

(b) What is auto-tuning, where could it be applied, and what is the main motivation for
it? (2p)

Good luck!
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