
COMPILERS AND INTERPRETERS

Lesson 4 – TDDD16

TDDB44 Compiler Construction 2010

Kristian Stavåker (kristian.stavaker@liu.se)

Department of Computer and Information Science

Linköping University

mailto:kristian.stavaker@liu.se

TODAY

TDDB44 Compiler Construction 2010

 Introduction to the Bison parser generator tool

 Introduction to quadruples and intermediate code generation

 Hints to laboratory assignments 3 and 4

NEXT LESSON

 December14th, 15.15-17.00

 Exam preparation

 Work mostly on your own (exercises from old exams, …)

 Some example solutions

 Opportunity to ask questions

TDDB44 Compiler Construction 2010

LABORATORY ASSIGNMENTS

TDDB44 Compiler Construction 2010

In the laboratory exercises you should get some practical

experience in compiler construction.

There are 4 separate assignments to complete in 6x2 laboratory

hours. You will also (most likely) have to work during non-

scheduled time.

LABORATORY ASSIGNMENTS

TDDB44 Compiler Construction 2010

Lab 3 Parser Generators
Generate a parser for a Pascal-like language using the Bison parser generator

Lab 4 Intermediate Code Generation
Generate intermediate (quadruple) code from the abstract syntax tree(s)

HANDING IN AND DEADLINE

TDDB44 Compiler Construction 2010

 Demonstrate the working solutions to your lab assistant
during scheduled time. Hand in your solutions to theory
questions on paper. Then send the modified code files to the
assistant (put TDDD16 <Name of the assignment> in the topic
field). One e-mail per group.

 Deadline for all the assignments is: December 15, 2010 You

will get 3 extra points on the final exam if you finish on time!

But the ‟extra credit work‟ assignments in the laboratory

instructions will give no extra credits this year.

BISON – PARSER

GENERATOR

TDDB44 Compiler Construction 2010

PURPOSE OF A PARSER

TDDB44 Compiler Construction 2010

 The parser accepts tokens from the scanner and verifies the
syntactic correctness of the program.
 Syntactic correctness is judged by verification against a formal

grammar which specifies the language to be recognized.

 Along the way, it also derives information about the program
and builds a fundamental data structure known as parse tree
or abstract syntax tree (ast).

 The abstract syntax tree is an internal representation of the
program and augments the symbol table.

BOTTOM-UP PARSING

 Recognize the components of a program and then combine

them to form more complex constructs until a whole program

is recognized.

 The parse tree is then built from the bottom and up, hence the

name.

TDDB44 Compiler Construction 2010

BOTTOM-UP PARSING (2)

TDDB44 Compiler Construction 2010

:=

x *

+

a b

c

X := (a + b) * c;

LR PARSING

TDDB44 Compiler Construction 2010

 A Specific bottom-up technique
 LR stands for Left->right scan, Rightmost derivation.

 Probably the most common & popular parsing technique.

 yacc, bison, and many other parser generation tools utilize LR
parsing.

 Great for machines, not so great for humans …

PROS AND CONS LR PARSING

TDDB44 Compiler Construction 2010

 Advantages of LR:
 Accept a wide range of grammars/languages

 Well suited for automatic parser generation

 Very fast

 Generally easy to maintain

 Disadvantages of LR:
 Error handling can be tricky

 Difficult to use manually

BISON

TDDB44 Compiler Construction 2010

 Bison is a general-purpose parser generator that converts a
grammar description of a context-free grammar into a C
program to parse that grammar

BISON (2)

 Input: a specification file containing mainly the grammar

definition

 Output: a C source file containing the parser

 The entry point is the function int yyparse();

 yyparse reads tokens by calling yylex and parses until

 end of file to be parsed, or

 unrecoverable syntax error occurs

 returns 0 for success and 1 for failure

TDDB44 Compiler Construction 2010

BISON USAGE

TDDB44 Compiler Construction 2010

Bison

Compiler

C Compiler

a.out

Bison source

program

parser.y

y.tab.c

a.out

Parse tree

y.tab.c

Token stream

BISON SPECIFICATION FILE

 A Bison specification is composed of 4 parts.

TDDB44 Compiler Construction 2010

%{

/* C declarations */

%}

/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

C DECLARATIONS

 Contains macro definitions and declarations of functions and

variables that are used in the actions in the grammar rules

 Copied to the beginning of the parser file so that they precede

the definition of yyparse

 Use #include to get the declarations from a header file. If C

declarations isn‟t needed, then the %{ and %} delimiters that

bracket this section can be omitted

TDDB44 Compiler Construction 2010

BISON DECLERATIONS

 Contains declarations that define terminal and non-terminal

symbols, and specify precedence

TDDB44 Compiler Construction 2010

GRAMMAR RULES

 Contains one or more Bison grammar rule, and nothing else.

 Example:

 expression : expression „+‟ term { $$ = $1 + $3; } ;

 There must always be at least one grammar rule, and the first

%% (which precedes the grammar rules) may never be omitted

even if it is the first thing in the file.

TDDB44 Compiler Construction 2010

ADDITIONAL C CODE

 Copied verbatim to the end of the parser file, just as the C

declarations section is copied to the beginning.

 This is the most convenient place to put anything that should

be in the parser file but isn‟t needed before the definition of

yyparse.

 The definitions of yylex and yyerror often go here.

TDDB44 Compiler Construction 2010

SYNTAX ERRORS

 Error productions can be added to the specification

 They help the compiler to recover from syntax errors and to

continue to parse

 In order for the error productions to work we need at least

one valid token after the error symbol

 Example 1:

 functionCall : ID „(„ paramList „)‟

| ID „(„ error „)‟

TDDB44 Compiler Construction 2010

USING BISON WITH FLEX

 Bison and flex are obviously designed to work together

 Bison produces a driver program called yylex() (actually its

included in the lex library -ll)

 #include “lex.yy.c” in the last part of bison specification

 this gives the program yylex access to bisons‟ token names

TDDB44 Compiler Construction 2010

USING BISON WITH FLEX (2)

 Thus do the following:

 % flex scanner.l

 % bison parser.y

 % cc y.tab.c -ly -ll

 This will produce an a.out which is a parser with an integrated

scanner included

TDDB44 Compiler Construction 2010

BISON EXAMPLE 1 (1/2)

TDDB44 Compiler Construction 2010

%{

#include <ctype.h> /* standard C declarations here */

// extern int yylex();

}%

%token DIGIT /* bison declarations */

%%

/* Grammar rules */

line : expr „\n‟ { printf { “%d\n”, $1 }; } ;

expr : expr „+‟ term { $$ = $1 + $3; }

| term ;

term : term „*‟ factor { $$ = $1 * $3; }

| factor ;

BISON EXAMPLE 1 (2/2)

TDDB44 Compiler Construction 2010

factor : „(„ expr ‟)‟ { $$ = $2; }

| DIGIT ;

%%

/* Additional C code */

void yylex () {

/* A really simple lexical analyzer */

int c;

c = getchar ();

if (isdigit (c)) {

yylval = c - ‟0‟ ;

return DIGIT;

}

return c;

}

BISON EXAMPLE 2 – MID-RULES

TDDB44 Compiler Construction 2010

thing: A { printf(“seen an A”); } B ;

The same as:

thing: A fakename B ;

fakename: /* empty */ { printf(“seen an A”); } ;

BISON EXAMPLE 3 (1/2)

TDDB44 Compiler Construction 2010

/* Infix notation calculator--calc */

%{

#define YYSTYPE double

#include <math.h>

%}

/* BISON Declarations */

%token NUM

%left '-' '+'

%left '*' '/'

%left NEG /* negation--unary minus */

%right '^' /* exponentiation */

/* Grammar follows */

%%

BISON EXAMPLE 3 (2/2)

TDDB44 Compiler Construction 2010

input: /* empty string */

| input line

;

line: '\n'

| exp '\n' { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }

| exp '+' exp { $$ = $1 + $3; }

| exp '-' exp { $$ = $1 - $3; }

| exp '*' exp { $$ = $1 * $3; }

| exp '/' exp { $$ = $1 / $3; }

| '-' exp %prec NEG { $$ = -$2; }

| exp '^' exp { $$ = pow ($1, $3); }

| '(' exp ')' { $$ = $2; }

;

%%

INTERMEDIATE CODE

GENERATION

TDDB44 Compiler Construction 2010

INTERMEDIATE LANGUAGE

 Is closer to machine code without being machine dependent.

 Can handle temporary variables.

 Means higher portability, intermediate code can easier be

expanded to assembly code.

 Offers the possibility of performing code optimizations such as

register allocation.

TDDB44 Compiler Construction 2010

INTERMEDIATE LANGUAGE (2)

 Why use intermediate languages?

 Retargeting - build a compiler for a new machine by attaching

a new code generator to an existing front-end and middle-part

 Optimization - reuse intermediate code optimizers in

compilers for different languages and different machines

 Code generation - for different source languages can be

combined

TDDB44 Compiler Construction 2010

GENERATION OF INTERMEDIATE

CODE

TDDB44 Compiler Construction 2010

q_rplus A PI $1
q_rassign $1 - B
q_labl 4 - -

<instr_list>

:=

b

a

+

PI

NULL

program example;
const

PI = 3.14159;
var

a : real;
b : real;

begin
b := a + PI;

end.

INTERMEDIATE LANGUAGES

 Various types of intermediate code are:

 Infix notation

 Postfix notation

 Three address code

 Triples

 Quadruples

TDDB44 Compiler Construction 2010

QUADRUPLES

 You will use quadruples as intermediate language where an

instruction has four fields:

TDDB44 Compiler Construction 2010

operator operand1 operand2 result

QUADRUPLES

TDDB44 Compiler Construction 2010

T4ET3-

T3T2T1*

T2DC+

T1BA+

resultoperand2operand1operator

(A + B) * (C + D) - E

HINTS LABORATORY

ASSIGNMENT 3

TDDB44 Compiler Construction 2010

PARSER GENERATORS

 Finnish a parser specification given in a parser.y bison file, by

adding rules for expressions, conditions and function

definitions,

TDDB44 Compiler Construction 2010

FUNCTIONS

 Outline:

TDDB44 Compiler Construction 2010

function : funcnamedecl parameters „:‟ type variables functions block „;‟

{

// Set the return type of the function

// Set the function body

// Set current function to point to the parent again

} ;

funcnamedecl : FUNCTION id

{

// Check if the function is already defined, report error if so

// Create a new function information and set its parent to current function

// Link the newly created function information to the current function

// Set the new function information to be current function

} ;

EXPRESSIONS

 For precedence and associativity you can factorize the

rules for expressions …

or

 you can specify precedence and associativy at the top of

the Bison specification file, in the Bison Declarations

section. Read more about this in the Bison reference(s).

TDDB44 Compiler Construction 2010

EXPRESSIONS (2)

 Example with factoring:

TDDB44 Compiler Construction 2010

expression : expression „+‟ term

{

// If any of the sub-expressions is NULL, set $$ to NULL

// Create a new Plus node but IntegerToReal casting might be needed

}

|

...

CONDITIONS

 For precedence and associativity you can factorize the

rules for conditions …

or

 you can specify precedence and associativy at the top of

the Bison specification file, in the Bison Declarations

section. Read more about this in the Bison reference(s).

TDDB44 Compiler Construction 2010

HINTS LABORATORY

ASSIGNMENT 4

TDDB44 Compiler Construction 2010

INTERMEDIATE CODE GENERATION

 The purpose of this assignment is to learn how abstract syntax

trees can be translated into intermediate code.

 You are to finish a generator for intermediate code

(quadruples) by adding rules for some language

constructs.

 You will work in the file codegen.cc.

TDDB44 Compiler Construction 2010

BINARY OPERATIONS

 In BinaryGenerateCode:

 Generate code for left expression and right expression.

 Generate either a realop or intop quadruple

 For relations the type of the result is always integer

 Otherwise the type of the result is the same as the type of the

operands

 You can use currentFunction->TemporaryVariable

TDDB44 Compiler Construction 2010

ARRAY REFERENCES

 The absolute address is computed as follows:

 absAdr = baseAdr + arrayTypeSize * index

TDDB44 Compiler Construction 2010

ARRAY REFERENCES (2)

 Generate code for the index expression

 You must then compute the absolute memory address

 You will have to create several temporary variables (of integer

type) for intermediate storage

 Generate a quadruple iaddr with id variable as input for getting

the base address

 Create a quadruple for loading the size of the type in question

to a temporary variable

 Then generate imul and iadd quadruples

 Finally generate either a istore or rstore quadruple

TDDB44 Compiler Construction 2010

IF STATEMENTS

 S if E then S1

 S if E then S1 else S2

TDDB44 Compiler Construction 2010

WHILE STATEMENT

 S while E do S1

TDDB44 Compiler Construction 2010

