
COMPILERS AND INTERPRETERS

Lesson 3 – TDDD16

TDDB44 Compiler Construction 2010

Kristian Stavåker (kristian.stavaker@liu.se)

Department of Computer and Information Science

Linköping University

mailto:kristian.stavaker@liu.se

TODAY

TDDB44 Compiler Construction 2010

 Hints to laboratory assignments 1 and 2.

 Introduction to the flex scanner generator tool.

LABORATORY ASSIGNMENTS

TDDB44 Compiler Construction 2010

In the laboratory exercises you should get some

practical experience in compiler construction.

There are 4 separate assignments to complete in

6x2 laboratory hours. You will also (most likely)

have to work during non-scheduled time.

HANDING IN AND DEADLINE

TDDB44 Compiler Construction 2010

 Demonstrate the working solutions to your lab assistant
during scheduled time. Hand in your solutions to theory
questions on paper. Then send the modified code files to
the assistant (put TDDD16 <Name of the assignment> in
the topic field). One e-mail per group.

 Deadline for all the assignments is: December 15, 2010

You will get 3 extra points on the final exam if you finish

on time! But the ’extra credit work’ assignments in the

laboratory instructions will give no extra credits this year.

 Remember to register yourself in the webreg system,

www.ida.liu.se/webreg

LABORATORY ASSIGNMENTS

TDDB44 Compiler Construction 2010

Lab 1 Attribute Grammars and Top-Down Parsing

Lab 2 Scanner Specification

Lab 3 Parser Generators

Lab 4 Intermediate Code Generation

1. ATTRIBUTE GRAMMARS AND TOP-

DOWN PARSING

TDDB44 Compiler Construction 2010

 Some grammar rules are given

 Your task:

 Rewrite the grammar (elimate left recursion,

etc.)

 Add attributes to the grammar

 Implement your attribute grammar in a C++

class named Parser. The Parser class should

contain a method named Parse that returns the

value of a single statement in the language.

2. SCANNER SPECIFICATION

TDDB44 Compiler Construction 2010

 Finish a scanner specification given in a

scanner.l flex file, by adding rules for C and C++

style comments, identifiers, integers, reals, etc..

3. PARSER GENERATORS

TDDB44 Compiler Construction 2010

 Finish a parser specification given in a parser.y

bison file, by adding rules for expressions,

conditions and function definitions, etc. You also

need to augment the grammar with error

productions.

4. INTERMEDIATE CODE GENERATION

TDDB44 Compiler Construction 2010

 The purpose of this assignment is to learn how

parse trees can be translated into intermediate

code.

 You are to finish a generator for intermediate

code by adding rules for some language

statements.

LAB SKELETON

TDDB44 Compiler Construction 2010

~TDDD16

/lab

/doc

Documentation for the assignments.

/lab1

Contains the necessary files to complete the first
assignment

/lab2

Contains the necessary files to complete the second
assignment

/lab3-4

Contains all the necessary files to complete assignment
three and four

INSTALLATION

TDDB44 Compiler Construction 2010

• Take the following steps in order to install the lab
skeleton on your system:
– Copy the source files from the course directory onto your

local account:

– You might also have to load some modules (more
information in the laboratory instructions).

mkdir TDDD16
cp -r ~TDDD16/lab TDDD16

HINTS LABORATORY

ASSIGNMENT 1

TDDB44 Compiler Construction 2010

REWRITING THE GRAMMAR

 Use one non-terminal for each precedence level.

E ::= E + E | E – E | T

T ::= T * T | T / T | …

 (Left) Associativity:

E ::= E + E | E – E | T => E ::= E + T | E – T | T

 See for instance:
http://www.lix.polytechnique.fr/~catuscia/teaching/cg428/02Spring/lecture_notes/L03.html

TDDB44 Compiler Construction 2010

REWRITING THE GRAMMAR (2)

 Transform the grammar to right recursive form:

A ::= A α | β (where β may not be preceded by A)

is rewritten to

A ::= β A’

A’ ::= α A’ | ε

 See Lecture 5 Syntax Analysis, Parsing

TDDB44 Compiler Construction 2010

INTRODUCING ATTRIBUTES

 See Lecture 8 on Semantic Analysis and Attribute

Grammars.

 Example:

 Hint: Perhaps use both synthesised and inherited

attributes

TDDB44 Compiler Construction 2010

E ::= E1 + T { E.val = E1.val + T.val; }

T ::= T1 * F { T.val = T1.val * F.val; }

IMPLEMENTATION

 You have been give a main function in main.cc.

TDDB44 Compiler Construction 2010

int main(void) {

Parser parser; double val;

while (1) {

try {

cout << "Expression: " << flush;

val = parser.Parse();

cout << "Result: " << val << '\n' << flush;

}

catch (ScannerError& e) {

cerr << e << '\n' << flush;

parser.Recover();

}

catch (ParserError) { parser.Recover(); }

catch (ParserEndOfFile) { cerr << "End of file\n" << flush; exit(0); }

}

}

}

IMPLEMENTATION (2)

 You have also been given files lab1.cc and lab1.hh for

implementing your Parser class.

 In the function Parse, start the parsing.

TDDB44 Compiler Construction 2010

double Parser::Parse(void) {

Trace x(“Parse”);

double val;

val= 0;

crt_token = the_scanner.Scan();

switch (crt.token.type)

{

case kIdentifier:

case kNumber:

case kLeftParen:

case kMinus:

val = pExpression();

if (crt_token.type != kEndOfLine) throw ParserError();

return val;

default: throw ParserError();

}

return val;

}

IMPLEMENTATION (3)

 Add one function for each non-terminal in the grammar

to your Parser class.

 See Lecture 5 Syntax Analysis, Parsing

TDDB44 Compiler Construction 2010

double Parser::pExpression(void) {

switch (crt_token.type) {

... ...

}

}

IMPLEMENTATION (3)

 You don’t need to change anything in lex.cc and lex.hh.

 Also implement some simple error recovery in your

Parser class.

TDDB44 Compiler Construction 2010

FLEX

TDDB44 Compiler Construction 2010

SCANNERS

TDDB44 Compiler Construction 2010

• Its input is text written in some language.

• Its output is a sequence of tokens from that text. The tokens are chosen

according with the language.

• Building a scanner manually is tedious.

• Mapping the regular expressions to finite state machine/automata is

straightforward, so why not automate the process?

• Then we just have to type in regular expressions and actions and get the

code for a scanner back.

Scanners are programs that recognize lexical

patterns in text

SCANNER GENERATORS

TDDB44 Compiler Construction 2010

• Automate is exactly what flex does!

• flex is a fast lexical analyzer generator, a tool for

generating programs that perform pattern

matching on text

• flex is a free implementation of the well-known

lex program

HOW IT WORKS

TDDB44 Compiler Construction 2010

flex generates at output a C source file lex.yy.c

which defines a routine yylex()

Lex Compiler lex.yy.clex.l

>> flex lex.l

HOW IT WORKS

TDDB44 Compiler Construction 2010

>> g++ lex.yy.c -lfl

lex.yy.c is compiled and linked with the -lfl library to

produce an executable, which is the scanner

C Compiler a.outlex.yy.c

a.out sequence of tokensinput stream

>> a.out < input.txt

FLEX SPECIFICATIONS

TDDB44 Compiler Construction 2010

Lex programs are divided into three components

/* Definitions – name definitions

* – variables defined

* – include files specified

* – etc

*/

%%

/* Translation rules – regular expressions together with actions in C/C++ */

%%

/* User code – support routines for the above C/C++ code */

NAME DEFINITIONS

TDDB44 Compiler Construction 2010

• Definitions are intended to simplify the scanner
specification and have the form:

• Subsequently the definition can be referred to by {name}, witch
then will expand to the definition.

• Example:

is identical/will be expanded to:

name definition

DIGIT [0-9]
{DIGIT}+”.”{DIGIT}*

([0-9])+”.”([0-9])*

PATTERN ACTIONS

TDDB44 Compiler Construction 2010

• The translation rules section of the lex/flex input file,
contains a series of rules of the form:

• Example:

pattern action

[0-9]* { printf (“%s is a number”, yytext); }

FLEX MATCHING

TDDB44 Compiler Construction 2010

Match as much as possible.

If more than one rule can be applied, then the

first appearing in the flex specification file is

preferred.

SIMPLE PATTERNS

TDDB44 Compiler Construction 2010

Match only one specific character

x The character 'x'

. Any character except newline

CHARACTER CLASS PATTERNS

TDDB44 Compiler Construction 2010

Match any character within the class

[xyz] The pattern matches either 'x', 'y', or 'z'

[abj-o] This pattern spans over a range of

characters and matches 'a', 'b', or

any letter ranging from 'j' to 'o'

NEGATED PATTERNS

TDDB44 Compiler Construction 2010

Match any character not in the class

[^z] This pattern matches any character

EXCEPT z

[^A-Z] This pattern matches any character

EXCEPT an uppercase letter

[^A-Z\n] This pattern matches any character

EXCEPT an uppercase letter or a

newline

SOME USEFULL PATTERNS

TDDB44 Compiler Construction 2010

r* Zero or more 'r', 'r' is any regular expr.

\\0 NULL character (ASCII code 0)

\123 Character with octal value 123

\x2a Character with hexadecimal value 2a

p|s Either 'p' or 's'

p/s 'p' but only if it is followed by an 's',

which is not part of the matched text

^p 'p' at the beginning of a line

p$ 'p' at the end of a line, equivalent to 'p/\n'

FLEX USER CODE

TDDB44 Compiler Construction 2010

Finally, the user code section is simply copied to

lex.yy.c verbatim. It is used for companion routines

which call, or are called by the scanner.

If the lex program is to be used on its own, this

section will contain a main program. If you leave this

section empty you will get the default main.

The presence of this user code is optional.

FLEX PROGRAM VARIABLES AND

FUNCTIONS

TDDB44 Compiler Construction 2010

yytext Whenever the scanner matches a token, the

text of the token is stored in the null terminated

string yytext

yyleng The length of the string yytext

yylex() The scanner created by the Lex has the entry point

yylex(), which can be called to start or resume

scanning. If lex action returns a value to a program,

the next call to yylex() will continue from the point

of that return

FLEX PROGRAM VARIABLES AND

FUNCTIONS

TDDB44 Compiler Construction 2010

yymore() Do another match and append its

result to the current match

yyless(int n) Push all but the first n characters

back to the input stream (to be

matched next time). yytext will

contain only the first n of the

matched characters.

yymore() EXAMPLE

TDDB44 Compiler Construction 2010

%%

hyper yymore();

text printf(“Token is %s\n”, yytext);

If the input string is “hypertext”, the output will be

“Token is hypertext”.

FLEX EXAMPLES

TDDB44 Compiler Construction 2010

EXAMPLE: RECOGNITION OF VERBS

TDDB44 Compiler Construction 2010

%{

/* includes and defines should be stated in this section */

%}

%%

[\t]+ /* ignore white space */

do|does|did|done|has { printf (”%s: is a verb\n”, yytext); }

[a-zA-Z]+ { printf (”%s: is not a verb\n”,yytext); }

.|\n { ECHO; /* normal default anyway */ }

%%

main() { yylex(); }

Mary has a little

lamb

EXAMPLE: CHARACTER COUNTING

TDDB44 Compiler Construction 2010

int num_lines = 0, num_chars = 0; /* Variables */

%%

\n { ++num_lines; ++num_chars; } /* Take care of newline */

. { ++num_chars; } /* Take care of everything else */

%%

main() { yylex();

printf("lines: %d, chars: %d\n", num_lines, num_chars);

}

A scanner that counts the number of characters

and lines in its input

The printed output is the result.

EXAMPLE: CHARACTER COUNTING (2)

TDDB44 Compiler Construction 2010

'\n' A newline increments the line count and the

character count

'.' Any character other than the newline only

increment the character count

EXAMPLE: SMALL LANGUAGE

SCANNER

TDDB44 Compiler Construction 2010

%{

#include <math.h>

%}

DIGIT [0-9]

ID [a-z][a-z0-9]*

%%

{DIGIT}+ { printf("An integer: %s (%d)\n", yytext, atoi(yytext)); }

{DIGIT}+"."{DIGIT}*

{ printf("A float: %s (%g)\n", yytext, atof(yytext)); }

if|then|begin|end|procedure|function

{ printf("A keyword: %s\n", yytext); }

{ID} { printf("An identifier: %s\n", yytext); }

EXAMPLE: SMALL LANGUAGE

SCANNER (2)

TDDB44 Compiler Construction 2010

"+"|"-"|"*"|"/" { printf("An operator: %s\n", yytext); }

"{"[\^{$\;$}}\n]*"}" /* eat up one-line comments */

[\t \n]+ /* eat up whitespace */

. { printf("Unknown character: %s\n", yytext);}

%%

main(argc, argv) {

++argv, --argc; /* skip over program name */

if (argc > 0) yyin = fopen(argv[0], "r");

else yyin = stdin;

yylex();

}

EXAMPLE: HTML TAGS

TDDB44 Compiler Construction 2010

/*Declarations */

%{

#include <stdio.h>

%}

/*Exclusive, only rules specific to <html_tag> will match */

%x html_tag

%%

[^<]* /* matches any char (zero or more times) except "<" */

"<" BEGIN(html_tag); /*If we find "<" go into context <html_tag> */

<html_tag>[^>]* printf("%s\n", yytext);

<html_tag>">" BEGIN(INITIAL); /* Enter intial/normal context */

%%

MORE ON LEX

TDDB44 Compiler Construction 2010

If you’ll use flex in the future…

Lex & Yacc, 2nd ed

By, John R Levine, Tony Mason & Doug

Brown

O'Reilly & Associates

ISBN: 1565920007

HINTS LABORATORY

ASSIGNMENT 2

TDDB44 Compiler Construction 2010

LABORATORY ASSIGNMENT 2

 You should work with the scanner.l file.

 Add regular expressions for floating point numbers,

integer numbers, C comments (both /* */ comments and

// one line comments), identifiers, empty space, newline.

 Rules for the language keywords are already given in the

scanner.l file. Add your rules below them.

TDDB44 Compiler Construction 2010

EXAMPLE

Rules for comments.

TDDB44 Compiler Construction 2010

“//”.*\n /* Do nothing */

“/*” BEGIN(c_comment)

<c_comment> {

“*/” … …

“/*” fprintf(stderr, “Warning: Nested comments\n”);

… …

}

