Assignments

- 1. Given the alphabet A = $\{1, 2, 3\}$ and the strings x = 2, y = 13, z = 323:
 - a. What are the strings xz, zyx, z², x⁷, and what are their lengths?
 - b. What are A¹, A², A⁰
 - c. Describe A^* and A^+
- 2. Given the following grammar for arithmetic expressions G(<exp>):

<exp> ::= <term> | <exp> + <term> | <exp> - <term> <term>::= <factor> | <term> * <factor> | <term> / <factor> <factor> ::= (<exp>) | <ident> <ident> ::= A | B | C ... | Z

a. Find derivations and draw a parse tree for the statements:

A*B-C, A*(B-C), A/B/C, and -A*B

- b. State the handle in statement form <term> * <factor> + B/C
- c. State a canonic derivation of one of the statements, in example 2a.
- d. Why is A * <exp> * D not in statement form?
- e. What are V (Vocabulary), Σ (Alphabet), and N (Non-terminals) in this grammar?
- f. Describe Σ^+ and L(G). State some string in Σ^+ which is not in L(G).
- 3. Using the grammar in exercise 2, draw the parse tree for the statement

A - <term> * B + (<term>)

Argue why there is no canonic derivation of the statement.

- 4. Consider the grammar in exercise 2 again.
 - a. Why can't the grammar be parsed using a topdown LL-parser? What options do we have?
 - b. Rewrite the grammar so that a leftmost derivation is possible.
 - c. Derive A*B-C using leftmost derivation and provide the corresponding parse-tree
- 5. Construct a context-free grammar for even integers, which may not begin with zeros (this also applies to a single zero).

- 6. Given the alphabet A = { a, b, c, d, e, f, g, h, i }:
 - a. Construct a context-free grammar for words of one syllable (i.e., words containing exactly one vowel).
 - b. Construct a context-free grammar for multi-syllable words.
- 7. Given the alphabet A = { a, b, c }: Write regular expressions that describe
 - a. all strings starting with a sequence of zero or several a's followed by an arbitrary number of b's and c's mixed together. The strings finish with another sequence of a's. (Example: aaabbcbca, bbca, aa).
 - b. aⁿbⁿcⁿ, can this expression be described using a regular expression? If so, write down the regular expression. If not, motivate why.
- 8. Describe the languages (sets) that the following grammars generate: <S> is the start symbol.
 - a.

<S> ::= <A> <A>

<A> ::= 1 <A> 0 | 10

b.

<S> ::= 1 <S> 0 | ::= 0 1 | ε

c.

<S> ::= 1 <A> | 0

<A> ::= 1 <A> | <C>

 ::= 0 | <C> <C> ::= 1 <C>0 | ε