TDDB29

Övningsuppgifter i formella språk och automatateori

Sammanställt av Jonas Wallgren

2007

Här följer de problem (med (partiella) lösningar) som gicks igenom på lektionen och som inte finns i kursmaterialet.

Problems

- 2.4 For each of the following languages, construct a DFA that accepts the language.
 - a) $L_1 = \{x \in \{0,1\}^* \mid x \text{ ends in } 00\}$
 - **b)** $L_2 = \{x \in \{0,1\}^* \mid x = (01)^n, n \ge 0\}$
 - c) $L_3 = \{x \in \{0,1\}^* \mid \text{every } 0 \text{ is immediately followed by } 1\}$
- 2.6 b) Given the NFA in figure 1, construct an equivalent DFA.

Figure 1: M_8

- **3.3** Construct an NFA which accepts the language defined by the regular expression $10 + (0+11)0^*1$.
- **6.1** Find CFG's for the following regular expressions:
 - a) 00(1+0)*1
 - **b)** 101(101)*010(010)*
 - c) (11+010)*11(00+11)*

Solutions

2.4 a) An example of a DFA M_{15} such that $L(M_{15}) = L_1$ is given in figure 2.

Figure 2: M_{15}

b) An example of a DFA M_{16} such that $L(M_{16}) = L_2$ is given in figure 3.

Figure 3: M_{16}

- c) An example of a DFA M_{17} such that $L(M_{17}) = L_4$ is given in figure 4.
- **2.6)** b The subset construction results in an DFA with reachable states $\{q_0, q_1, q_3, q_5, q_6, q_7, q_{10}\}$, $\{q_2, q_9, q_{10}\}$, $\{q_4, q_{10}\}$, $\{q_6, q_7, q_8, q_{10}\}$, $\{q_9\}$. The initial state is $\{q_0, q_1, q_3, q_5, q_6, q_7, q_{10}\}$. The final states are those containing q_{10} .
- 3.3 By decomposing the regular expression syntactically according to the recursive definition of regular expressions, an NFA can be constructed systematically in a bottom-up fashion

Figure 4: M_{17}

by successively joining NFA:s corresponding to subexpressions according to the regular operator (*, concatenation, +) in question. The resulting NFA is shown in figure 5.

Figure 5: M_{23}

6.1

a)
$$S \rightarrow 00A1$$

 $A \rightarrow \epsilon \mid 0A \mid 1A$

b)
$$S \rightarrow 101A010B$$

 $A \rightarrow \epsilon \mid 101A$
 $B \rightarrow \epsilon \mid 010B$

c)
$$S \rightarrow A11B$$

 $A \rightarrow \epsilon \mid 11A \mid 010A$
 $B \rightarrow \epsilon \mid 00B \mid 11B$