
TDDD55 – Compilers and Interpreters
Laboration Overview

Martin Sjölund martin.sjolund@liu.se

Department of Computer and Information Science
Linköping University

2018-11-07

mailto:martin.sjolund@liu.se


Purpose of Lessons

I Practice theory
I Introduce the laboratory assignments
I Prepare for the final examination

Prepare by reading the laboratory instructions, the course book, and the lecture notes.
All the laboratory instructions and material available in the course directory,
~TDDD55/lab/ or on the course homepage.



Laboratory Assignments

I In the laboratory exercises you should get some practical experience in compiler
construction.

I There are 4 separate assignments to complete in 4x2 laboratory hours. You will
also (most likely) have to work during non-scheduled time.



Lesson Schedule

I Formal languages and automata theory
I Formal languages and automata theory, Flex
I Intermediate code generation, Bison
I Exam preparation



Handing in and deadline

I Demonstrate the working solutions during scheduled sessions.
I Then, hand in code and answers to any questions via e-mail. One e-mail from

your LiU-email per group (subject: TDDD55: lab no. ).
I Deadline for all the assignments is the study period. Check the homepage for

dates.
I Sign up in the webreg!



Laboratory Assignments

I Lab 1 Attribute Grammars and Top-Down Parsing
I Lab 2 Scanner Specification
I Lab 3 Parser Generators
I Lab 4 Intermediate Code Generation



1. Attribute Grammars and Top-Down Parsing

I Some grammar rules are given
I Your task:

I Rewrite the grammar (eliminate left recursion, etc.)
I Add attributes and attribute rules to the grammar
I Implement your attribute grammar in a C++ class named Parser. The method

Parser::Parse should return the value of a single statement in the language.



2. Scanner Specification

I Finish a scanner specification given in Flex (scanner.l), by adding rules for
comments, identifiers, integers, and reals.

I Details in lesson 2.



3. Parser Generators

I Finish a parser specification given in Bison (parser.y), by adding rules for
expressions, conditions and function definitions, …

I Augment the grammar with error productions.
I Details in lesson 3.



4. Intermediate Code Generation

I The purpose of this assignment to learn about how parse trees can be translated
into intermediate code.

I Finish a generator for intermediate code by adding rules for some language
statements.

I Details in lesson 3.



www.liu.se


