
TDDD55 Lesson 3
The Bison Parser generator & Intermediate Code generation

John Tinnerholm

john.tinnerholm@liu.se

Agenda

• Hour I

– Lab III, Parser Generators

– Lab IV, Intermediate code generation

• Hour 2

– Lab work

2022-11-29 2TDDD55 Lesson 2

Lab 3 Parser Generators

Lab 3

• Your task:

– Create a parser from a language
specification

– You will use GNU Bison, an LARL(1)
parser generator

– Write specifications for expressions,
conditions and function definitions

– Make sure that both children of an
operator node have the same type

2022-11-29 4TDDD55 Lesson 2

Lab 3

Files for Lab 3

2022-11-29 5TDDD55 Lesson 2

• The test file is used for testing
your implementation

• Supply scanner.l from your lab-1
implementation (Introduce your
rules, there is some existent setup
code in the provided file)

• Note that simply copy paste will get
you into trouble. Edit the scanner file
appropriately

Lab 3

2022-11-29 6TDDD55 Lesson 2

• The test file is used for testing your
implementation

• Try your implementation by writing output
to file and use the diff tool with trace-
lab3.txt

• How to run with debugging information?

The Bison Parser generator

• The Bison parser generator is developed by the GNU project.

• Bison generates parsers to parse a supplied language

– In order for Bison to parse a language, it must be described by a context-free
grammar.

– Bison is optimized for LR(1)1

• You need not to specify formal grammar as a part of the lab

2022-11-29 7TDDD55 Lesson 2

1The grammar of your language is described in the
instructions

Structure of Bison

2022-11-29 8
TDDD55 Lesson 2

%{
/* C declarations */

%}
/* Bison declarations */

%%
/* Grammar rules */

%%
/* Additional C code */

The file to the right is for the file parser.y

Implementing a simple calculator using Bison

The Calculator grammar revisisted
<exp> := <exp> + <term>

| <exp> - <term>

| <term>

<term> := <term> * <factor>

| <term> / <factor>

| <factor>

<factor>:= <num>

| (<exp>)

<num>:= [0-9]+

2022-11-29 10TDDD55 Lesson 2

• We will once again consider the
grammar for arithmetic
expressions.

• LR(K) vs LL(K)

• Let’s see how we can implement
our calculator using Bison! (And
flex..)

LR(K): Left to right scan, Rightmost derivation

Demonstration

Available on youtube as an extra resource

Resulting Bison-based Calculator

<exp> := <exp> + <term>

| <exp> - <term>

| <term>

<term> := <term> * <factor>

| <term> / <factor>

| <factor>

<factor>:= <num>

| (<exp>)

<num>:= [0-9]+

2022-11-29 12TDDD55 Lesson 2

/*C-Declarations*/
%{
#include <stdio.h>
#include <ctype.h>
/* Kill a warning */
int yylex();
#define TRUE 1

void yyerror (char const *s) {
fprintf (stderr, "%s\n", s);

}

%}

/*Bison declarations*/
%token DIGIT

/*Bison rules*/
%%
line : expr '\n' { printf("> %d \n",$1); YYACCEPT;}

| 'A' {YYABORT;} /* allows printing of the result */
expr : expr '+' term { $$ = $1 + $3;}

| expr '-' term { $$ = $1 - $3;}
| term { $$ = $1;}
;

term : term '*' factor { $$ = $1 * $3; }
| term '/' factor { $$ = $1 / $3; }
| factor { $$ = $1;}
;

factor : num { $$ = $1; }
| '(' expr ')' { $$ = $2; }
;

num : DIGIT { $$ = $1; }

/* Auxiliary C-Functions */
%%
int main() {

while (TRUE) {
int res = yyparse();
if (res != 0) {

return res;
}

}
}
int yylex(void) {

int c;
c = getchar();
if (isdigit(c)) {

yylval = c - '0';
return DIGIT;

}
return c;

}

Inspiration from the desk calculator, see p 289 Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. Compilers: Pinciples, Techniques, and Tools.

Original grammar

Lab-3/4: The Language
A brief overview

The programming language for Lab 3 and Lab 4

• The language you are to compile is in
some ways similar to Pascal but have
syntax from C and Ada.

• A program consists of three sections.

– The first section, declarations, holds
declarations of all global variables.

– The next section, functions, holds all
functions defined in the program.

– The final section, body, is a code
block representing the main program
body.

2022-11-29 14TDDD55 Lesson 2

<program> ::= <variables> <functions> <block>;

//Both <variables>, <functions> and <block> might be ε

Function definitions

Function definitions start out with the
keyword function followed by the function’s
name, parameters and return type. Next
comes a block of local variable declarations
and then local function declarations. The
function is concluded with a code block for
the function body.

2022-11-29 15TDDD55 Lesson 2

Function that are declared within another function have
access to the local variables and parameters of the
surrounding function. The language has a static
scope.

//Observe not exactly as in the lab.

<function> := function <name> (<parameters>) : <type>
<variables> <functions><block>

Task in parser.y
/* --- Your code here ---
*
* Write the function production. Take care to enter and exit
* scope correctly. You'll need to understand how shift-reduce
* parsing works and when actions are run to do this.
*
* Solutions that rely on shift-time actions will not be
* acceptable. You should be able to solve the problem
* using actions at reduce time only.
*
* In lab 4 you also need to generate code for functions after parsing
* them. Just calling GeneratCode in the function should do the trick.
*/

A program and a function is essentially the same thing.
While the syntax is different there is a similarity in the semantics.

Declarations & Declaration blocks

• Declarations appear

– At the beginning of a program

– At the beginning of a function

• A declaration block starts with
the keyword declare, followed by
one or more declarations. The
declaration block is terminated
by the start of anything that does
not look like a declaration.

2022-11-29 16TDDD55 Lesson 2

<variables> := DECLARE <declarations>
| ε

<declarations> := <declarations>
| <declaration>

<declaration> := <name> : <type> ;

Code-blocks & Statements

• Five statements

– If-statments

– Function calls

– Assignments

– Return
statements

– While statements

2022-11-29 17TDDD55 Lesson 2

• Code blocks are
defined using the
keyword begin and
ended with the
keyword end
followed by a ;

• Code blocks contain
a list of statements

//Observe not exactly as in the lab (parser.y)

<block> := begin <statements> <end>

<statements> := <statements> <statement>

<statement> := <assign>

| <if>

| <while>

| <call>

| <return>

Statements

2022-11-29 18TDDD55 Lesson 2

<while> := while <condition> do <block> while

<return> := return <expression>

<call> := <name> (<expressions>)

<assign> := <lvalue> assign <expression>

<if-statment> := if <condition> then <block> <elseifpart>
<elsepart>

<elseifpart> := elseif <condition> then <block>

| ε

<elsepart> := else <block> if

| if

Lab 4
Intermediate Code Generation

Intermediate code

2022-11-29 20TDDD55 Lesson 2

• Intermediate code, sometimes also
refereed to as intermediate representations

– Platform independent

– Easier to work with

– Optimizations, such as estimating
optimal register allocation and constant
folding. Also different optimizations are
suitable on different levels of the IR.

• Examples

• Postfix or reverse polish notation

– HP calculators!

– 4 4 + = 8

• Triples

• Quadruples

– This is what we will look at in
the lab

Demonstration

Quadruples

2022-11-29 22TDDD55 Lesson 2

Operator Operand 1 Operand 2 Result

(A + B) * (C + D) - E

Operator Operand 1 Operand 2 Result

+ A B TEMP 1

+ C D TEMP 2

* TEMP 1 TEMP 2 TEMP 3

- TEMP 3 E TEMP 4

• Quadruples is a low level
intermediate represenatation
consisting of four parts.

– Operator

– Operands 1 & 2

– Result

Basic blocks

• A basic block

– Code without control flow

• One entry and one exit

• Some languages consider function
calls to terminate basic blocks

• The basic block forms the vertices of
the control flow graph

• Basis of many optimization algortihms

– More on this in the lectures

2022-11-29 23TDDD55 Lesson 2

1. x = a + 17;

2. y = 3;

3. if (b) goto L1;

4. x = x + y;

5. goto L2;

L1:

1. x = x - 1;

2. y = x / 2;

L2:

1. x = x * y;

Exit

x = a +
17
y = 3
test(b)

Entry

L1
x = x -1
y = x / 2

L2
x = x * y

x = x + y

Y N

Basic
block
graph of
the
program
to the left

In the lab this structure is given implicitly by the quadruples

Lab 3/4

2019-11-07 24TDDD55 Lesson 1

Lexer
(scanner.l)

Parser
(parser.y)

String ASTTokens
Backend

IR

Lab 3

Lab 4

Lab 1

Lab 3/4

Lexer
(scanner.l)

Parser
(parser.y)

ASTTokens
Backend

IR

This Photo by
Unknown
Author is
licensed under
CC BY-ND

Code
generator

C-Code

https://www.fsf.org/blogs/community/happy-birthday-gcc
https://creativecommons.org/licenses/by-nd/3.0/

Lab 4 Intermediate code generation

2022-11-29 26TDDD55 Lesson 2

• The purpose of this exercise is to learn
about how parse trees can be
translated into intermediary code.

• Write methods for

– If statements (including the elseif
and else branches)

– Array references

– All binary operators

• Use BinaryGenerateCode()

• You will work in codegen.cc

When completed, you should have a
program that is capable of generating
intermediate code for the small
programming language used in exercises
two, three and four.

Lab 4 Computing absolute and relative adress of arrays

2022-11-29 27TDDD55 Lesson 2

• The absolute address is computed
as follows: absolute_adress =
base_adress + array_type_size *
index

Memory
adress

0X0
D0

0X20
D32

0X40
D64

0X60
D128

Index 0 1 2 3

Element 1 2 3 4
• Say that we want to access the first

element:

– 0 + 0x0 * 0 = 0x0 = 0

• Element two:

– 0 + 0x20 * 2 = 0x40 = 64

➢ Note that the size of the integer and real in our
language is 32 bits

➢ But in pratice it will be 64.
➢ Use the sizeof operator

If we would have had 1 as our start index the
formula is a bit different

Lab 4 Theory question

2022-11-29 28TDDD55 Lesson 2

• Theory exercise

– Demonstrate how badly generated code could be optimised. Do so by
suggesting a concrete algorithm with a concrete example of algorithm
would transform the presented code

– Of course the algortihm could be implemented in the code generator as well,
however, that is optional

• Please do as an extra exercise☺

One more thing…

• I am looking for thesis workers

– Interested in Compiler Construction

• Work on a visualization tool to showcase complex systems and battle climate
change

• Visual GUI testing for equation oriented languages

• Language Server for equation oriented languages

• FMI/FMU support for equation oriented languages

• Work with Compilers/Interpreters + Julia + interface design = Awesome!

• Possible result is a research report

2022-11-29 29TDDD55 Lesson 2

Thank you!

