
TDDD55- Compilers and Interpreters
Lesson 3

Zeinab Ganjei (zeinab.ganjei@liu.se)

Department of Computer and Information Science
Linköping University

Laboratory Assignment 3

Parser Generation

• Finnish a parser specification given in a parser.y bison file, by
adding rules for expressions, conditions and function
definitions,

Functions

•Outline:
function : funcnamedecl parameters ‘:’ type variables functions block ‘;’

{

// Set the return type of the function

// Set the function body

// Set current function to point to the parent again

} ;

funcnamedecl : FUNCTION id

{

// Check if the function is already defined, report error if so

// Create a new function information and set its parent to current function

// Link the newly created function information to the current function

// Set the new function information to be the current function

} ;

Expressions

•For precedence and associativity you can
factorize the rules for expressions …

•Or specify precedence and associativy at the
top of the Bison specification file, in the
Bison Declarations section. Read more about
this in the Bison reference.

Expressions (2)

•Example with factoring:
expression : expression ‘+’ term

{

// If any of the sub-expressions is NULL, set $$ to NULL

// Create a new Plus node and return in $$

//IntegerToReal casting might be needed

}

|

...

Laboratory Assignment 4

Intermediate code

Intermediate Code

•Closer to machine code, but not machine
specific

•Can handle temporary variables.
•Means higher portability, intermediate code
can easier be expanded to assembly code.

•Offers the possibility of performing code
optimizations such as register allocation.

Intermediate Code

•Why do we use intermediate languages?
• Retargeting - build a compiler for a new
machine by attaching a new code generator
to an existing front-end and middle-part

• Optimization - reuse intermediate code
optimizers in compilers for different
languages and different machines

• Code generation - for different source
languages can be combined

Intermediate Languages

•Infix notation
•Postfix notation
•Three address code

₋Triples
₋Quadruples

Quadruples

•You will use quadruples as intermediate
language where an instruction has four
fields:

operator operand1 operand2 result

Generation of Intermediate Code

instr_list

:=

b

a

+

PI

NULL

program example;
const

PI = 3.14159;
var

a : real;
b : real;

begin
b := a + PI;

end.

q_rplus A PI $1

q_rassign $1 - B

q_labl 4 - -

Quadruples

T4ET3-

T3T2T1*

T2DC+

T1BA+

resultoperand2operand1operator

(A + B) * (C + D) - E

Intermediate Code Generation

•The purpose of this assignment is to learn
how abstract syntax trees can be translated
into intermediate code.

•You are to finish a generator for intermediate
code (quadruples) by adding rules for some
language constructs.

•You will work in the file codegen.cc.

Binary Operations

•In function BinaryGenerateCode:
₋ Generate code for left expression and right

expression.
₋ Generate either a realop or intop quadruple

• Type of the result is the same as the type of the operands
• You can use currentFunction->TemporaryVariable

Array References

•The absolute address is computed as follows:
₋ absAdr = baseAdr + arrayTypeSize * index

•Generate code for the index expression
•You must then compute the absolute address

₋ You will have to create several temporary variables
(of integer type) for intermediate storage

₋ Generate a quadruple iaddr with id variable as input
for getting the base address

₋ Create a quadruple for loading the size of the type in
question to a temporary variable

₋ Then generate imul and iadd quadruples
₋ Finally generate either a istore or rstore quadruple

If Statement
•S  if E then S1

•S  if E then S1 else S2

WHILE Statement

•S  while E do S1

