
TDDD55: Compilers and
Interpreters

Lesson 3
Filip Strömbäck (filip.stromback@liu.se)

Department of Computer and Information Science
Linköping University

mailto:filip.stromback@liu.se

Schedule

1. Formal languages and automata theory

2. Formal languages and automata theory, Flex

3. Bison and intermediate code generation

4. Exam preparation

5. Exam preparation

Laboratory assignments

• Goal: Get some practical experience in
compiler construction

• 4 assignments to complete in 4x2 sessions →
non-scheduled time required

1. Attribute Grammars and Top-Down parsing

2. Scanner Specification

3. Parser Generators

4. Intermediate Code Generation

Handing in and deadline

• Demonstrate during scheduled sessions

• Then, hand in code and answers to any
questions in the assignment via e-mail. One e-
mail per group, subject: TDDD55: Lab n. From
your LiU-email.

• Deadline: 21st December

Skeleton
~TDDD55

/lab

/doc

Documentation for the assignments.

/lab1

Contains all the necessary files to complete the first
assignment

/lab2

Contains all the necessary files to complete the
second assignment

/lab3-4

Contains all the necessary files to complete
assignment three and four

Copy to your home directory using:
cp -r ~TDDD55/lab .

Lab 1

• Some grammar rules given:

• Rewrite the grammar to LL(1)

• Add attribute rules to the grammar

• Implement the LL(1) grammar and the
attributes in a C++-class named Parser. Parser
shall contain a method Parse() which returns
the value of a single statement in the
language.

Lab 2

• Finish a scanner specification in Flex
(scanner.l) by adding rules for comments,
identifiers, integers and reals.

Lab 3

• Finish a parser specification in Bison (parser.y)
by adding rules for expressions, conditions,
function definitions, etc.

• You also need to add error productions.

• More details in lesson 3.

Lab 4

• Generate intermediate code from a parse tree.

• Finish a generator for intermediate code by
adding rules for some language statements.

• More details in lesson 3.

Bison

Purpose of a parser

• Accept tokens from a scanner and verify the
syntactic correctness of the program

– Uses formal grammar for specifying the language

• Along the way, it derives information about
the program and stores it as an abstract syntax
tree (AST)

• The AST is an internal representation of the
program and augments the symbol table

Bottom-up Parsing

• Recognize the components of a program and
then combine them to form more complex
constructs until a whole program is recognized

• The parse tree is then built from the bottom
up, hence the name.

LR Parsing

• A specific bottom-up technique

• LR = left-to-right scan, reversed rightmost
derivation

• Probably the most common and popular
technique

• yacc, bison and many other parser generation
tools utilize LR parsing

• Great for machines, harder for humans

Pros and Cons of LR Parsing

• Advantages

– Accepts a wide range of grammars/languages

– Well suited for automatic parser generation

– Very fast

– Generally easy to maintain

• Disadvantages

– Error handling can be tricky

– Difficult to use manually

Bison

• Bison is a general-purpose parser generator
that converts a grammar description of a
context-free grammar into a C-program to
parse the grammar

• Similar idea to flex

How it works

Bison generates a C source file, y.tab.c

Bison Compilerparser.y y.tab.c

How it works

y.tab.c is compiled and linked with required
libraries to produce an executable, which is the
parser

C Compilery.tab.c a.out

a.outtoken stream sequence of tokens

Bison specifications

Bison specifications are divided into 4 parts
%{

/* C declarations */

%}

/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

C Declarations

• Contains macro definitions and declarations of
functions and variables that are used in the
actions in the grammar rules

• Copied to the beginning of the parser file so
that they precede the definition of yyparse

• Use #include<…> to get the declarations from
a header file. If C declarations aren’t needed,
then the %{ and %} can be omitted

Bison declarations

• Contains:

– Declarations that define terminal and non-
terminal symbols

– Data types of semantic values of various symbols

– Specify precedence

Bison specifications

Bison specifications are divided into 4 parts
%{

/* C declarations */

%}

/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

Grammar rules

• Contains one or more Bison grammar rules,
and nothing else.

• Example:
– expression : expression ‘+’ expression { $$ = $1 +

$3; };

• There must always be at least one grammar
rule, and the first %% (which precedes the
grammar rules) may never be omitted even if
it is the first thing in the file

Bison specifications

Bison specifications are divided into 4 parts
%{

/* C declarations */

%}

/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

Additional C code

• Copied verbatim to the end of the parser file,
just as the C declarations are copied to the
beginning

• This is the most convenient place to put
anything that should be in the parser file but
isn’t needed before the definition of yyparse

• For example, yylex() and yyerror() often go
here

Example 1

%{

#include <ctype.h>

#define YYSTYPE double

int yylex();

%}

%token DIGIT

%%

line : expr ‘\n’ { printf(“%d\n”, $1); };

expr : expr ‘+’ term { $$ = $1 + $3; }

| term { $$ = $1; };

term : term ‘*’ fact { $$ = $1 * $3; }

| fact { $$ = $1; };

fact : ‘(’ expr ‘)’ { $$ = $2; }

| DIGIT;

Example 1 (cont)

%%

int yylex() {

// A really simple lexical analyzer.

int c = getchar();

if (isdigit(c)) {

yylval = c – ‘0’;

return DIGIT;

}

return c;

}

Example 2

thing: A { printf(“seen an A”); } B;

Same as

thing: A fakename B;

fakename: /* empty */ { printf(“seen an A”); };

Example 3

%{

#define YYSTYPE double

#include <math.h>

%}

%token NUM

%left ‘-’ ‘+’

%left ‘*’ ‘/’

%right ‘^’

Example 3 (cont)

%%

input : /* empty string */ | input line;

line : ‘\n’

| expr ‘\n’ { printf(“\t%.10f\n”, $1); };

expr : NUM { $$ = $1; }

| expr ‘+’ expr { $$ = $1 + $3; }

| expr ‘-’ expr { $$ = $1 - $3; }

| expr ‘*’ expr { $$ = $1 * $3; }

| expr ‘/’ expr { $$ = $1 / $3; }

| expr ‘^’ expr { $$ = pow($1, $3); }

| ‘(’ expr ‘)’ { $$ = $1; };

%%

Syntax Errors

• Error productions can be added
• They help the compiler to recover from syntax

errors and to continue to parse
• In order for the error productions to work, we

need at least one valid token after the error
symbol.

• Example
– functionCall : ID ‘(’ paramList ‘)’

| ID ‘(’ error ‘)’;

• Recover from syntax errors by discarding tokens
until it reaches the valid token.

Using Bison with Flex

• Bison and flex are designed to work together

• Flex produces a driver program called yylex()

– #include “lex.yy.c” in the last part of bison
specification

– this gives the program yylex access to bison’s
token names

Using Bison with Flex

• Thus, do the following:
– flex scanner.l

– bison parser.y

– cc y.tab.c –ly –ll

• This will produce an a.out which is a parser
with an included scanner

Assignment 3

Parser generators

Parser Generators

• Finish a parser specification given in parser.y
by adding rules for expressions, conditions
and function definitions, …

Functions

function : funcnamedecl parameters ‘:’ type variables functions block ‘;’

{

// Set the return type of the function

// Set the function body

// Set current function to point to the parent again

}

funcnamedecl : FUNCTION id

{

// Check if the function is already defined, report error if so

// Create a new function information and set its parent to current

function

// Link the newly created function information to the current function

// Set the new function information to be the current function

}

Expressions and conditions

• For precedence and associativity you can
factorize the rules…

• or specify precedence and associativity at the
top of the Bison specification file. Read more
about this in the Bison reference.

Expressions - Example

expression : expression ‘+’ term

{

// If any of the sub-expressions are NULL,

// set $$ to NULL

// Create a new Plus node and return in $$

// IntegerToReal casting might be needed

}

Assignment 4

Intermediate code

Intermediate Code

• Closer to machine code, but not machine
specific

• Can handle temporary variables

• Means higher portability: intermediate code
can easier be expanded to assembly code

• Offers the possibility of performing code
optimizations such as register allocation

Intermediate Code

• Why do we use intermediate languages?

• Retargeting – Build a compiler for a new
machine by attaching a new code generator to
an existing front-end and middle part.

• Optimization – reuse intermediate code
optimizers in compilers for different languages
and different machines

• Code generation for different source
languages can be combined

Intermediate Languages

• Infix notation

• Postfix notation

• Three-address code

– Triples

– Quadruples

Quadruples

• We use quadruples as an intermediate
language.

• An instruction has four fields:

operator operand1 operand2 result

Generation

program ex;

const

PI = 3.1415;

var

a : real;

b : real;

begin

b := a + PI;

end

instr_list

:=

b +

a PI

null

q_rplus A PI $1

q_rassign $1 - B

q_labl 4 - -

Quadruples

(A+B)*(C+D)-E

operator operand1 operand2 result

+ A B T1

+ C D T2

* T1 T2 T3

- T3 E T4

Intermediate Code Generation

• The purpose of this assignment is to learn how
abstract syntax trees can be translated into
machine code.

• You are to finis a generator for intermediate
code (quadruples) by adding rules for some
language constructs.

• You will work in codegen.cc.

Binary Operations

• Create code for left expression and right
expression

• Generate either a realop or intop quad

– Type of the result is the same as the type of the
operands

– You can use currentFunction->TemporaryVariable

Array References

• The absolute address is computed as follows:
– absAddr = baseAddr + arrayTypeSize*index

• Generate code for the index expression

• You must then compute the absolute address
– You will have to create several temporary variables

– Create a quad for loading the size of the type to a
temporary

– Then generate iadd and imul quads

– Finally generate either a istore or rstore quad

If Statement

• S -> if E then S1

• S -> if E then S1 else S2

E.code

S1.code

…

E.code

S1.code

S2.code

…

E.true

E.false

E.true

E.false

E.next

to E.true

to E.false

to E.true

to E.false

to E.next

While Statement

• S -> while E do S1

E.code

S1.code

…

E.true

E.false

to E.true

to E.false

S.begin

to S.begin

