
TDDD55- Compilers and Interpreters
Lesson 3

Zeinab Ganjei (zeinab.ganjei@liu.se)

Department of Computer and Information Science

Linköping University

1. Grammars and Top-Down Parsing

• Some grammar rules are given

• Your task:

• Rewrite the grammar (eliminate left recursion, etc.)

• Add attributes and attribute rules to the grammar

• Implement your grammar in a C++ class named Parser.
The Parser class should contain a method named Parse
that returns the value of a single statement in the
language.

2. Scanner Specification

• Finish a scanner specification given in a scanner.l
flex file, by adding rules for C and C++ style
comments, identifiers, integers, and floating point
numbers.

3. Parser Generators

• Finish a parser specification given in a parser.y bison
file, by adding rules for expressions, conditions and
function definitions, You also need to augment
the grammar with error productions.

4. Intermediate Code Generation

• The purpose of this assignment to learn about how
abstract syntax trees can be translated into
intermediate code.

• You are to finish a generator for intermediate code
by adding rules for some language statements.

Laboratory Skeleton

~TDDD55

/lab

 /doc

Documentation for the assignments.

 /lab1

Contains all the necessary files to complete the first
assignment

 /lab2

Contains all the necessary files to complete the second
assignment

 /lab3-4

Contains all the necessary files to complete assignment
three and four

Bison – Parser Generator

Purpose of a Parser

• The parser accepts tokens from the scanner and verifies the
syntactic correctness of the program.

• Syntactic correctness is judged by verification against a formal
grammar which specifies the language to be recognized.

• Along the way, it also derives information about the program
and builds a fundamental data structure known as parse tree
or abstract syntax tree (ast).

• The abstract syntax tree is an internal representation of the
program and augments the symbol table.

Bottom-Up Parsing

• Recognize the components of a program and then combine
them to form more complex constructs until a whole
program is recognized.

• The parse tree is then built from the bottom and up, hence
the name.

Bottom-Up Parsing(2)

:=

x *

+

a b

c

X := (a + b) * c;

LR Parsing

• A Specific bottom-up technique
• LR stands for Left->right scan, Rightmost derivation.

• Probably the most common & popular parsing technique.

• yacc, bison, and many other parser generation tools utilize LR
parsing.

• Great for ŵaĐhiŶes, Ŷot so great for huŵaŶs …

Pros and Cons of LR parsing

• Advantages of LR:
• Accept a wide range of grammars/languages

• Well suited for automatic parser generation

• Very fast

• Generally easy to maintain

• Disadvantages of LR:
• Error handling can be tricky

• Difficult to use manually

Bison

• Bison is a general-purpose parser generator that converts a
grammar description of a context-free grammar into a C
program to parse that grammar

Bison (2)

• Input: a specification file containing mainly the grammar
definition

• Output: a C source file containing the parser

• The entry point is the function int yyparse();
• yyparse reads tokens by calling yylex and parses until

• end of file to be parsed, or

• unrecoverable syntax error occurs

• returns 0 for success and 1 for failure

Bison Usage

Bison
Compiler

C Compiler

a.out

Bison source
program

parser.y

y.tab.c

a.out

Parse tree

y.tab.c

Token stream

Bison Specification File

• A Bison specification is composed of 4 parts.

%{
 /* C declarations */

%}
 /* Bison declarations */

%%

 /* Grammar rules */

%%

 /* Additional C code */

1.1. C Declarations

• Contains macro definitions and declarations of functions and
variables that are used in the actions in the grammar rules

• Copied to the beginning of the parser file so that they
precede the definition of yyparse

• Use #include to get the declarations from a header file. If C
deĐlaratioŶs isŶ͛t Ŷeeded, theŶ the %{ aŶd %} deliŵiters that
bracket this section can be omitted

1.2. Bison Declarations

• Contains :

• declarations that define terminal and non-terminal
symbols

• Data types of semantic values of various symbols

• specify precedence

2. Grammar Rules

• Contains one or more Bison grammar rule, and nothing else.

• Example:
• expressioŶ : expressioŶ ͚+͛ terŵ { $$ = $1 + $3; } ;

• There must always be at least one grammar rule, and the first
%% (which precedes the grammar rules) may never be omitted
even if it is the first thing in the file.

Bison Specification File

• A Bison specification is composed of 4 parts.

%{
 /* C declarations */

%}
 /* Bison declarations */

%%

 /* Grammar rules */

%%

 /* Additional C code */

3. Additional C Code

• Copied verbatim to the end of the parser file, just as the C
declarations section is copied to the beginning.

• This is the most convenient place to put anything that should
ďe iŶ the parser file ďut isŶ͛t Ŷeeded ďefore the defiŶitioŶ of
yyparse.

• The definitions of yylex and yyerror often go here.

Bison Example 1 (1/2)

%{

#include <ctype.h> /* standard C declarations here */

// extern int yylex();

}%

%token DIGIT /* bison declarations */

%%

/* Grammar rules */

line : expr ‘\n’ { printf { “%d\n”, $1 }; } ;

expr : expr ‘+’ term { $$ = $1 + $3; }

 | term ;

term : term ‘*’ factor { $$ = $1 * $3; }

 | factor ;

Bison Example 1 (2/2)

factor : ‘(‘ expr ’)’ { $$ = $2; }
 | DIGIT ;
%%
/* Additional C code */

int yylex () {
 /* A really simple lexical analyzer */
 int c;
 c = getchar ();
 if (isdigit (c)) {
 yylval = c - ’0’ ;
 return DIGIT;
 }
 return c;
}

Bison Example 2 – Mid-Rules

thing: A { printf(“seen an A”); } B ;

The same as:

thing: A fakename B ;

fakename: /* empty */ { printf(“seen an A”); } ;

Bison Example 3 (1/2)
/* Infix notation calculator--calc */

%{

#define YYSTYPE double

#include <math.h>

%}

/* BISON Declarations */

%token NUM

%left '-' '+'

%left '*' '/‘
%right '^' /* exponentiation */

/* Grammar follows */

%%

Bison Example 3 (2/2)
input: /* empty string */

 | input line

;

line: '\n'

 | exp '\n' { printf ("\t%.10g\n", $1); };

exp: NUM { $$ = $1; }

 | exp '+' exp { $$ = $1 + $3; }

 | exp '-' exp { $$ = $1 - $3; }

 | exp '*' exp { $$ = $1 * $3; }

 | exp '/' exp { $$ = $1 / $3; }

 | exp '^' exp { $$ = pow ($1, $3); }

 | '(' exp ')' { $$ = $2; }

;

%%

Syntax Errors

• Error productions can be added to the specification

• They help the compiler to recover from syntax errors and to
continue to parse

• In order for the error productions to work we need at least
one valid token after the error symbol

• Example:
• fuŶĐtioŶCall : ID ͚;͚ paraŵList ͚Ϳ͛
 | ID ͚;͚ error ͚Ϳ͛

Using Bison With Flex

• Bison and flex are obviously designed to work together

• Bison produces a driver program called yylex() (actually its
included in the lex library -ll)

• #iŶĐlude ͞lex.yy.c͟ iŶ the last part of ďisoŶ speĐifiĐatioŶ

• this gives the program yylex access to bisons͛ tokeŶ
names

Using Bison with Flex (2)

• Thus do the following:

• % flex scanner.l

• % bison parser.y

• % cc y.tab.c -ly -ll

• This will produce an a.out which is a parser with an
integrated scanner included

Laboratory Assignment 3

Parser Generations

• Finnish a parser specification given in a parser.y bison file, by
adding rules for expressions, conditions and function
definitions,

Functions

• Outline:

function : funcnamedecl parameters ‘:’ type variables functions block ‘;’
{

 // Set the return type of the function

 // Set the function body

 // Set current function to point to the parent again

} ;

funcnamedecl : FUNCTION id

{

 // Check if the function is already defined, report error if so

 // Create a new function information and set its parent to current function

 // Link the newly created function information to the current function

 // Set the new function information to be current function

} ;

Expressions

• For precedence and associativity you can factorize the rules for
expressioŶs …

or

• you can specify precedence and associativy at the top of the Bison
specification file, in the Bison Declarations section. Read more about
this in the Bison reference(s).

Expressions (2)

• Example with factoring:

expression : expression ‘+’ term

{

 // If any of the sub-expressions is NULL, set $$ to NULL

// Create a new Plus node but IntegerToReal casting might be needed

}

|

...

Conditions

• For precedence and associativity you can factorize the rules for
ĐoŶditioŶs …

or

• you can specify precedence and associativy at the top of the Bison
specification file, in the Bison Declarations section. Read more about
this in the Bison reference(s).

Laboratory Assignment 4

Intermediate Code

• Is closer to machine code without being machine dependent.

• Can handle temporary variables.

• Means higher portability, intermediate code can easier be expanded
to assembly code.

• Offers the possibility of performing code optimizations such as
register allocation.

Intermediate Code (2)

• Why use intermediate languages?

• Retargeting - build a compiler for a new machine by attaching a new
code generator to an existing front-end and middle-part

• Optimization - reuse intermediate code optimizers in compilers for
different languages and different machines

• Code generation - for different source languages can be combined

Intermediate Languages

• Various types of intermediate code are:

• Infix notation

• Postfix notation

• Three address code

• Triples

• Quadruples

Quadruples

• You will use quadruples as intermediate language where an
instruction has four fields:

operator operand1 operand2 result

Generation of Intermediate Code

q_rplus A PI $1
q_rassign $1 - B
q_labl 4 - -

<instr_list>

:=

b

a

+

PI

NULL

program example;
const
 PI = 3.14159;
var
 a : real;
 b : real;
begin
 b := a + PI;
end.

Quadruples

T4 E T3 -

T3 T2 T1 *

T2 D C +

T1 B A +

result operand2 operand1 operator

(A + B) * (C + D) - E

Intermediate Code Generation

• The purpose of this assignment is to learn how abstract syntax trees
can be translated into intermediate code.

• You are to finish a generator for intermediate code (quadruples) by
adding rules for some language constructs.

• You will work in the file codegen.cc.

Binary Operations

• In function BinaryGenerateCode:

• Generate code for left expression and right expression.

• Generate either a realop or intop quadruple

• Type of the result is the same as the type of the operands

• You can use currentFunction->TemporaryVariable

Array References

• The absolute address is computed as follows:

• absAdr = baseAdr + arrayTypeSize * index

Array References (2)

• Generate code for the index expression

• You must then compute the absolute memory address

• You will have to create several temporary variables (of integer type) for
intermediate storage

• Generate a quadruple iaddr with id variable as input for getting the base
address

• Create a quadruple for loading the size of the type in question to a
temporary variable

• Then generate imul and iadd quadruples

• Finally generate either a istore or rstore quadruple

IF Statement

• S if E then S
1

• S if E then S
1
 else S

2

WHILE Statement

• S while E do S
1

TDDD55 Compilers and Interpreters 2013

Questions?

