
TDDD55: Compilers and
Interpreters

Lesson 2
Filip Strömbäck (filip.stromback@liu.se)

Department of Computer and Information Science
Linköping University

mailto:filip.stromback@liu.se

Schedule

1. Formal languages and automata theory

2. Formal languages and automata theory, Flex

3. Bison and intermediate code generation

4. Exam preparation

5. Exam preparation

Laboratory assignments

• Goal: Get some practical experience in
compiler construction

• 4 assignments to complete in 4x2 sessions →
non-scheduled time required

1. Attribute Grammars and Top-Down parsing

2. Scanner Specification

3. Parser Generators

4. Intermediate Code Generation

Handing in and deadline

• Demonstrate during scheduled sessions

• Then, hand in code and answers to any
questions in the assignment via e-mail. One e-
mail per group, subject: TDDD55: Lab n. From
your LiU-email.

• Deadline: 21st December

Skeleton
~TDDD55

/lab

/doc

Documentation for the assignments.

/lab1

Contains all the necessary files to complete the first
assignment

/lab2

Contains all the necessary files to complete the
second assignment

/lab3-4

Contains all the necessary files to complete
assignment three and four

Copy to your home directory using:
cp -r ~TDDD55/lab .

Lab 1

• Some grammar rules given:

• Rewrite the grammar to LL(1)

• Add attribute rules to the grammar

• Implement the LL(1) grammar and the
attributes in a C++-class named Parser. Parser
shall contain a method Parse() which returns
the value of a single statement in the
language.

Lab 2

• Finish a scanner specification in Flex
(scanner.l) by adding rules for comments,
identifiers, integers and reals.

Lab 3

• Finish a parser specification in Bison (parser.y)
by adding rules for expressions, conditions,
function definitions, etc.

• You also need to add error productions.

• More details in lesson 3.

Lab 4

• Generate intermediate code from a parse tree.

• Finish a generator for intermediate code by
adding rules for some language statements.

• More details in lesson 3.

Flex

Scanners

• Scanners are programs that recognize lexical
patterns in text

• Input: text written in some language

• Output: sequence of tokens

• Mapping regular expressions to finite state
machine is straightforward.

• Automate the process with flex

Scanner generators

• Flex is a fast lexical analyzer generator, a tool
for generating programs that perform pattern
matching on text.

• Flex is a free implementation of the well-
known lex program.

How it works

Flex generates a C source file, lex.yy.c, which
defines yylex()

Lex Compilerlex.l lex.yy.c

>> flex lex.l

How it works

lex.yy.c is compiled and linked with the –lfl
library to produce an executable, which is the
scanner

C Compilerlex.yy.c a.out

Lex Compilerinput stream sequence of tokens

>> g++ lex.yy.c -lfl

>> ./a.out < input.txt

Lex specifications

Lex programs are divided into three components
/* Definitions - name definitions

* variable definitions

* include files specified

* etc.

*/

%%

/* Translation rules –

* regular expressions together with actions in C/C++ */

%%

/* User code –

* support routines for the above C/C++ code */

Name definitions

• Intended to simplify the scanner specification
and have the form:

• It can then be referred to using {name}

• Example:

name definition

DIGIT [0-9]
{DIGIT}+”.”{DIGIT}*
which is equivalent to
([0-9])+”.”([0-9])*

Lex specifications

Lex programs are divided into three components
/* Definitions - name definitions

* variable definitions

* include files specified

* etc.

*/

%%

/* Translation rules –

* regular expressions together with actions in C/C++ */

%%

/* User code –

* support routines for the above C/C++ code */

Pattern actions

• The translation rules section of the flex input
file contains a series of rules of the form:

pattern action

• Example:

[0-9]* { printf(“%s is a number\n”, yytext); }

Flex matching

• Match as much as possible.

• If more than one rule can be applied, the first
appearing in the specification file is preferred.

Patterns

• Match a specific character

“x” match the character x

. match any character except newline

Patterns

• Match any character inside the class

[xyz] Either ‘x’, ‘y’, or ‘z’

[abj-o] Either ‘a’, ‘b’ or any letter in the range

‘j’ to ‘o’

Patterns

• Match any character not in a class

[^z] Any character except z

[^A-Z] Any character except an uppercase letter

[^A-Z\n] Any character except an uppercase letter
and a newline.

Some useful patterns

r* Zero or more ‘r’, ‘r’ is any regular expr.

\\0 NULL character (ASCII code 0)

\123 Character with octal value 123

\x2A Character with hexadecimal value 2A

p|s Either ‘p’ or ‘s’

p/s ‘p’ but only if followed by an ‘s’, which is not
part of the matched text.

^p ‘p’ at the beginning of a line

p$ ‘p’ at the end of a line, equivalent to ‘p/\n’

Lex specifications

Lex programs are divided into three components
/* Definitions - name definitions

* variable definitions

* include files specified

* etc.

*/

%%

/* Translation rules –

* regular expressions together with actions in C/C++ */

%%

/* User code –

* support routines for the above C/C++ code */

Flex user code

• The presence of user code is optional

• The user code section is copied veriatim to
lex.yy.c. It is used for companion routines wich
call or are called by the scanner.

• If the lex program is to be used on its own,
this section will contain a main function. If you
leave this section empty, you get the default
main.

Flex variables and functions

yytext Whenever the scanner matches a
token, the text of the token is stored
in the null terminated yytext.

yyleng The length of the string in yytext.

yylex() The scanner created by lex has the
entry point yylex(), which can be called
to start or resume scanning. If a lex
action returns a value to a program, the
next call to yylex() will continue from
the point of that return.

Flex variables and functions

yymore() Do another match and append
its result to the current yytext
(instead of replacing it).

yyless(int n) Push all but the first n
characters back to the input
stream (to be matched next
time). yytext will contain only
the first n of the matched
characters.

yymore() example

What is printed if the input is “hypertext”?

%%

“hyper” yymore();

“text” { printf(“Token is %s\n”), yytext); }

Example: Recognize verbs

%{

#include <stdio.h>

%}

%%

[\t]+ /* ignore white space */

”do”|”does”|”did”|”done”|”has” {

printf(“%s: is a verb\n”, yytext); }

[a-zA-Z]+ { printf(“%s: is not a verb\n”, yytext); }

.|\n { ECHO; }

%%

main() { yylex(); }

Example: Character counting

%{

#include <stdio.h>

%}

int num_lines = 0, num_chars = 0;

%%

\n { ++num_lines; ++num_chars; }

. { ++num_chars; }

%%

main() {

yylex();

printf(“lines: %d, characters: %d\n”,

num_lines, num_chars);

}

Example: HTML Tags

%{

#include <stdio.h>

%}

/* Exclusive start condition, ie. only rules specific

* to <html_tag> will match */

%x html_tag

%%

[^<]* /* matches any char (zero or more times) except “<“ */

“<“ BEGIN(html_tag); /* activate start condition <html_tag> */

<html_tag>[^>]* printf(“%s\n”, yytext);

<html_tag>”>” BEGIN(INITIAL);

%%

main() {

yylex();

}

Lab 2

• Finish a scanner specification given in a
scanner.l file.

• Add regular expressions for floating point
numbers, integer numbers, C comments (both
/**/ comments and // one line comments),
identifiers, empty space and newline.

• Rules for the language keywords are alredy
given in scanner.l. Add your rules below them.

Lab 2

• Skip characters in comments, both single-line
and multi-line comments.

• If the scanner sees /* within a C comment, it
must print a warning message.

Comments example

%{

#include <stdio.h>

%}

%x c_comment

%%

...

“//”.*\n /* Do nothing */

“/*” BEGIN(c_comment);

<c_comment> {

“*/” ...

“/*” fprintf(stderr, “Warning: Nested comments!\n”);

...

}

%%

main() {

yylex();

}

Integers and identifiers

• Integers are just a sequence of numbers

• Identifiers must start with a letter, followed by
any number of digits, letters or underscore
characters.

Floating point numbers

• Floating-point numbers consist of an integer part
followed by a decimal point, decimal part and an
exponent part.
– eg. 56.11E-2

• The integer and decimal parts are sequences of digits.
The exponent part consists of the character E followed
by an optional sign + or – and a sequence of digits

• Either the integer or the decimal part (or both) must be
given

• The exponent is optional.
• If the integer part and exponent are both given, the

decimal point and decimal part are optional.

Examples

• 1.1

• .1

• 1.

• 1.1E2

• 2E-3

• 1E-4

