
TDDD55- Compilers and InterpretersLesson 2
Zeinab Ganjei (zeinab.ganjei@liu.se)

Department of Computer and Information Science
Linköping University

1. Grammars and Top-Down Parsing

• Some grammar rules are given
• Your task:

• Rewrite the grammar
• Add attributes and attribute rules to the grammar
• Implement your grammar in a C++ class named Parser. The Parser class should contain a method named Parse that returns the value of a single statement in the language.

2. Scanner Specification
• Finish a scanner specification given in a scanner.lflex file, by adding rules for C and C++ style comments, identifiers, integers, and floating point numbers.

3. Parser Generators
• Finish a parser specification given in a parser.y bisonfile, by adding rules for expressions, conditions and function definitions, You also need to augment the grammar with error productions.
• More on bison in lesson 3.

4. Intermediate Code Generation
• The purpose of this assignment is to learn about how abstract syntax trees can be translated into intermediate code.
• You are to finish a generator for intermediate code by adding rules for some language statements.
• More in lesson 3.

Laboratory Skeleton
~TDDD55

/lab
/doc

Documentation for the assignments.
/lab1

Contains all the necessary files to complete the first assignment
/lab2

Contains all the necessary files to complete the second assignment
/lab3-4

Contains all the necessary files to complete assignment three and four

Installation
• Take the following steps in order to install the lab skeleton on your system:

– Copy the source files from the course directory onto your local account:

– You might also have to load some modules (more information in the laboratory instructions).

mkdir TDDD55cp -r ~TDDD55/lab TDDD55

Today
• Introduction to the flex scanner generator tool.
• Introduction to laboratory assignment 2.
• Exercises in formal languages and automata theory.

Flex

Scanners

• Its input is text written in some language.
• Its output is a sequence of tokens from that text. The tokens are chosen according to the language.
• Building a scanner manually is tedious.
• Mapping the regular expressions to finite state machine/automata is straightforward, so why not automate the process?
• Then we just have to type in regular expressions and actions and get the code for a scanner back.

Scanners are programs that recognize lexicalpatterns in text

Scanner Generators

• Automation is exactly what flex does!
• flex is a fast lexical analyser generator, a tool for generating programs that perform pattern matchingon text
• flex is a free implementation of the well-known lexprogram

How it works
flex generates at output a C source file lex.yy.c
which defines a routine yylex()

>> flex lex.l

Lex Compiler lex.yy.clex.l

How it works

>> g++ lex.yy.c -lfl

lex.yy.c is compiled and linked with the -lfl library to
produce an executable, which is the scanner

C Compiler a.outlex.yy.c

>> a.out < input.txt

a.out sequence of tokensinput stream

Flex Specifications
Lex programs are divided into three components
/* Definitions – name definitions
* – variables defined
* – include files specified
* – etc
*/

%%
/* Translation rules – regular expressions together with actions in C/C++ */
%%
/* User code – support routines for the above C/C++ code */

1. Name Definitions
• Definitions are intended to simplify the scanner specification and have the form:
• Subsequently the definition can be referred to by {name}, which then will expand to the definition.
• Example:

is identical/will be expanded to:

name definition

DIGIT [0-9]
{DIGIT}+”.”{DIGIT}*

([0-9])+”.”([0-9])*

Flex Specifications
Lex programs are divided into three components
/* Definitions – name definitions
* – variables defined
* – include files specified
* – etc
*/

%%
/* Translation rules – regular expressions together with actions in C/C++ */
%%
/* User code – support routines for the above C/C++ code */

2. Pattern Actions
• The translation rules section of the flex input file, contains a series of rules of the form:

• Example:
pattern action

[0-9]* { printf (“%s is a number”, yytext); }

Flex Matching
• Match as much as possible.
• If more than one rule can be applied, then the first appearing in the flex specification file is preferred.

Simple Patterns
• Match only one specific character
“x” The character 'x'
. Any character except newline

Character Class Patterns
• Match any character within the class
[xyz] The pattern matches either 'x', 'y', or 'z'
[abj-o] This pattern spans over a range of

characters and matches 'a', 'b', or
any letter ranging from 'j' to 'o'

Negated Patterns
Match any character not in the class
[^z] This pattern matches any character

EXCEPT z
[^A-Z] This pattern matches any character

EXCEPT an uppercase letter
[^A-Z\n] This pattern matches any character

EXCEPT an uppercase letter or a
newline

Some Useful Patterns
r* Zero or more 'r', 'r' is any regular expr.
\\0 NULL character (ASCII code 0)
\123 Character with octal value 123
\x2a Character with hexadecimal value 2a
p|s Either 'p' or 's'
p/s 'p' but only if it is followed by an 's',

which is not part of the matched text
^p 'p' at the beginning of a line
p$ 'p' at the end of a line, equivalent to 'p/\n'

/* Definitions – name definitions
* – variables defined
* – include files specified
* – etc
*/

%%
/* Translation rules – regular expressions together with actions in C/C++ */
%%
/* User code – support routines for the above C/C++ code */

3.Flex User Code
• The presence of this user code is optional.
• Finally, the user code section is simply copied to lex.yy.c verbatim. It is used for companion routines which call, or are called by the scanner.
• If the lex program is to be used on its own, this section will contain a main function. If you leave this section empty you will get the default main.

Flex Program Variables and Counters
yytext Whenever the scanner matches a token, the

text of the token is stored in the null terminated
string yytext

yyleng The length of the string yytext

yylex() The scanner created by the Lex has the entry point
yylex(), which can be called to start or resume
scanning. If lex action returns a value to a program,
the next call to yylex() will continue from the point
of that return

Flex Program Variables and Functions
yymore() Do another match and append its

result to the current yytext (instead of replacing it)
yyless(int n) Push all but the first n characters

back to the input stream (to be
matched next time). yytext will
contain only the first n of the
matched characters.

yymore() Example

%%
“hyper” yymore();
“text” { printf(“Token is %s\n”, yytext); }

The output will be “Token is hypertext”.

What will be printed by the following scanner if the input string is “hypertext”?

Flex Examples

Example: Recognition of Verbs
%{
/* includes and defines should be stated in this section */
%}
%%
[\t]+ /* ignore white space */
“do”|”does”|”did”|”done”|”has” { printf (”%s: is a verb\n”, yytext); }
[a-zA-Z]+ { printf (”%s: is not a verb\n”,yytext); }
.|\n { ECHO; /* normal default anyway */ }
%%
main() { yylex(); }

Mary has a little
lamb

Example: Character Counting

int num_lines = 0, num_chars = 0; /* Variables */
%%
\n { ++num_lines; ++num_chars; } /* Take care of newline */
. { ++num_chars; } /* Take care of everything else */
%%
main() { yylex();

printf("lines: %d, chars: %d\n", num_lines, num_chars);
}

Write a scanner that counts the number of characters and
lines in its input

Example: HTML Tags
/*Declarations */
%{
#include <stdio.h>
%}
/*Exclusive start condition, i.e. only rules specific to <html_tag> will match */
%x html_tag
%%
[^<]* /* matches any char (zero or more times) except "<" */
"<" BEGIN(html_tag); /* activate start condition <html_tag> */
<html_tag>[^>]* printf("%s\n", yytext);
<html_tag>">" BEGIN(INITIAL); /* Return to initial/original state*/
%%

Write a scanner that
counts the number of
characters and lines in
its input

• More details about Flex syntax and semantic:
http://www.ida.liu.se/~TDDD55/laboratories/FLEX.ps

TDDD55 Compilers and Interpreters 2013

Laboratory Assignment 2

Laboratory Assignment 2
• Finish a scanner specification given in a scanner.l flex file.
• Add regular expressions for floating point numbers, integer numbers, C comments (both /* */ comments and // one line comments), identifiers, empty space, newline.
• Rules for the language keywords are already given in the scanner.lfile. Add your rules below them.

Comments
• Skip characters in comments, both single-line C++ comments and multi line C style comments.
• If the scanner sees /* within a C comment, it must print a warning message.
• If end of line is encountered within a C style comment, print an error message and then terminate.

Comments Example
Rules for comments.
“//”.*\n /* Do nothing */
“/*” BEGIN(c_comment)
<c_comment> {
“*/” … …
“/*” fprintf(stderr, “Warning: Nested comments\n”);
… …
}

Integers
• Integers are simply sequences of digits that are not part of identifiers or floating-point numbers.

Floating Point Numbers
• Floating-point numbers consist of an integer part followed by a decimal point, decimal part and an exponent part.

• e.g. 56.11E-2
• The integer and decimal parts are sequences of digits. The exponent part consists of the character e or E followed by an optional sign + or - and a sequence of digits.
• Either the integer or the decimal part (or both) must be given.
• The exponent is optional.
• If the integer part and exponent are both given, the decimal point and decimal part are optional.

Floating Point Numbers Example
• 1.1
• .1
• 1.
• 1.1E2
• 2E-3
• 1E-4

• Use ? as optional pattern. Example: [+-]?

Identifiers
• Identifiers must start with a letter, followed by any number of digits, letters or underscore characters.

Questions?

