TDDD55-Lesson 1

Introduction to formal languages and automata theory. Short introduction to Lab 1

John Tinnerholm \& Jonas Wallgren

Agenda

- Hour I
- Brief introduction to Automata Theory and Formal languages
- Some hints for Lab 1
- Hour 2
- Problem solving / Lab 1
- (See exercises on the course homepage)

A Formal Language

- Consists of words
- A.k.a Strings, Symbol sequence?
- A word consists of letters
- A.k.a Symbols, Glyphs
- Do not need to be what we think about as letters
- Must be well-formed
- Classes of languages exist
- More about this later in the course

What is a Letter and an Alphabet?

- Letter (Symbol, Glyph,...)
- Alphabet usually denoted with the Greek letter big sigma
- EX:
$-\Sigma=\{\mathrm{A}, \mathrm{B}\}$

Words

- From these definitions we know that AAA, ABA and ABBBBA are words in our language, assuming it is well formed
- A formal language is the set of the possibility infinite words we can construct from our alphabet
- EX:
$-\Sigma=\{\mathrm{A}, \mathrm{B}\}$
- Some possible words
$-\mathrm{W}=\{\mathrm{A}, \mathrm{AA}, \mathrm{AAA}, \mathrm{AAAA}, \ldots .$.

What is Automata?

Examples of Automata

- Your Computer
- It is a Turing machine
- The Coffee Machine
- Finite State Machine (FSM). However, might as well be a Turing machine as well : \cdot
- Different classes of Automata
- Read more in introduction to Automata Theory, Languages, and Computation ©
- Chapter 1 \& Chapter 2 are relevant for this course. Focus on concepts not proofs/lemmas ${ }^{1}$.
- Formal Languages and Automata Theory, 6 credits (TDDD14)
- For Lab 1 we deal with FA and regular languages. More specifically regular expressions which we use to specify our Automata that does tokenizing!

What is Automata Theory?

- It is the theory/study of Automata
- In textbooks Automata usually looks like transition diagrams
- Moore and Mealy machines are a variant of automata with output \odot
- Moore
- The Output is associated with state
- Mealy
- The Output is associated with transition from one state to the next

Digital Logic

- Digital Logic is a language
- Alphabet
$-\Sigma=\{0,1\}$
- Words:
- \{01,10,11...\}

State Diagrams/Finite Automaton (FA)

- Directed graph (Digraph)
- Set of states:
- Set of transitions:
- A string is accepted by a FA (Finite Automaton) if we go from the start state to some accepted state
- Nondeterministic finite automaton(NFA)
- Theoretical
- Can be simulated

Practical Applications

Applications

- Regular expressions
- Digital circuits
- Computers
- Compilers

Compiler Pipeline

Lab 1

Lab 2

Regular expressions and FA

- What is accepted by FA can also be described by a regular expression!
- Important. The limitations of finite automata also applies to regular expressions
- Finite automata can only count.
- You can't parse using regular expressions!

Dictionary. Some short terms explained

- $\mathbf{\Sigma}=$ Alphabet, sequence of symbols (Big Sigma)
- $\mathbf{Q}=$ The set of states in our FA
- $\boldsymbol{\delta}=$ State transition function (Little delta)
- $F=$ Set of final states, or you can say accept states
- $q_{0}=$ Initial state
- FA = Finite Automata
- NFA = None deterministic finite automata
- DFA = Deterministic finite automata

Dictionary. Some short terms explained

- $\varepsilon=$ Empty string (Small Epsilon)
$-\mathrm{A} \varepsilon \mathrm{Be} \mathrm{C} \Leftrightarrow \mathrm{ABC}$
- ${ }^{*}=$ The Kleene star
- $A B=$ Juxtaposition (Concatenation) between string A and B
- + and |
- In the tradition of the text (Formal languages): + means "or" (|)
- It might also mean concatenation/juxtaposition in some literature
- Please state what definition you use!

LINKÖPING
UNIVERSITY

Technique to generate NFA from regular expression

Converting Regular Expresisons to NFA: Thompsons algorithm

- Converts regular expressions into a corresponding NFA
- Not a part of the course but might be useful to learn anyway
- Usually inutitive approaches work

Hints for Lab 1

Hints for Lab 1

- Instructions:
- https://www.ida.liu.se/~TDDD55/laboratories/instructions/lab1.html
- Clone the lab from
- https://gitlab.liu.se/tddd55/tddd55-lab
- It is important to consult the documentation and not attempt to make progress by trial and error!
- Remember to also handle tabs ($\backslash \mathbf{t}$)

Hints for Lab 1

- Lab 1 consists of several files
- main.cc
- Makefile
- Makefile.dependencies
- scanner.h
- scanner.l
- scanner.l is the only file that you need to modify

Hints for Lab 1

- To Compile:
- Type make at the directory where the files are
- Test the lab by executing:
- ./scanner ./test/<file-you-want-to-run>

Hints for Lab 1

- Scanner specification via regular expressions
- Some definitions that usually means the same thing
- Tokenizer, Lexical analyser, Scanner
- Necessary to escape special tokens (Or rather token that has a meaning in Flex)
- Try the examples from the Flex manual
- https://www.ida.liu.se/~TDDB44/laboratories/instructions/_static/flex/in dex.html
- Remember to also handle tabulation "\t"

Hints for Lab 1

- An Integer with a dot
- INTDOT [0-9]+ \backslash.
- An Integer
- INTEGER [0-9]+
- A Integer or an an Integer with a dot
- INTEGER_OR_INTDOT (INTEGER)|(INTDOT)
- Nested comments might be hard.
- Tip: Read up on Flex start conditions. See chapter 10 in the flex manual.

Extended solution proposals

Extended solution proposal to Exercise 2.4

- We can write L1 as the following regular expression:
a) $L_{1}=\left\{x \in\{0,1\}^{*} \mid x\right.$ ends in 00$\}$
- (o|1)* 00
- From this we define our NFA
- From our starting state we can select between two paths
- O^{*} or 1^{*}
- For oo. We simply go forward two steps

Resulting NFA

1.0

UNIVERSITY

Extended solution proposal to Exercise 2.4

- Deriving a DFA
- $\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Alphabet: $\Sigma=\{0,1\}$
- Transition function: $\boldsymbol{\delta}$ See next slide
- States: $\mathrm{Q}=\{\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3\}$ //Intuition: We have to handle atleast 3 tokens
- Accept states: $\mathrm{F}=\{\mathrm{S} 3\}$
- $S 1->S 2->S 3$ for the input 00

State transition table for our transition function: δ

The state transistion table

State Input	0	1
S1	S2	S1
S2	S3	S1
S3	S3	S1

Alphabet: $\Sigma=\{\mathbf{0}, \mathbf{1}\}$
Transition function: $\boldsymbol{\delta}$
States: $\mathbf{Q}=\{\mathbf{S 1 , S 2 , S 3}\}$
Accept states: $\mathrm{F}=\{\mathbf{S 3}\}$

Extended solution proposal for 6.1

- Given the following regular expressions
$-00(1 \mid 0)^{*} 1$
- 101(101)* 101 (010)*
- (11|010)*11(00|11)*
- Find Context Free Grammars(CFG) that correspond to the word that is accepted by the regular expression
- If there are any insecurities regarding CFG and production rules, see lecture 3

Regular Expression 6.1 A

- $00(1 \mid 0)^{*} 1$
- For this expression we shall first consider the types of strings we can accept
- We know that our alphabet is:
$-\Sigma=\{0,1\}$
- Let's derive a set of words that we would accept:
- \{001, 0001, 00101, ...\}
- Note the Kleene star * and |
- Kleene star * allows the empty string

Deriving a CFG for 6.1 A

- 00(1|0)* 1
- Intuition
- From the expression above we notice that we always need oo as a prefix
- Likewise, the suffix must be 1
- Rule 1
$-\mathrm{S} \rightarrow 00 \mathrm{~A} 1$
- We do not yet bother with what A should be

Deriving CFG for 6.1 A

- $00(\mathbf{1} \mid \mathbf{0})^{*} 1$
- We know that $1 \mid 0$ means a 1 or zero
- From this we know that (1|0)* gives the set:
- $\{\varepsilon, 0,1,00,01,10,11,001, \ldots\}$
- 2^{N} Different combinations where N is positive infinity
- Zero (ε) times gives us:
- $001 \Leftrightarrow 00 \varepsilon 1$ So we can introduce the rule $\mathrm{A} \rightarrow \varepsilon$

Deriving Rules for 6.1 A

- $S \rightarrow 00 A 1 \& A \rightarrow \varepsilon$
- Now we look at $00(\mathbf{1} \mid \mathbf{0})^{*} 1$ again
$-(1 \mid 0)^{*} / /\{\varepsilon, 10,110,11110, \ldots\}$
- For the entire expression we would have 00101 for 10
- Notice that we need flexibility here. We can't simply state that A is 10 . The reason is that A might be $\mathbf{1 1 0}$ or $\mathbf{1 1 1 0}$
- If we say $A \rightarrow 1 A$ or $A \rightarrow 0 A$ we get this flexibility
- Set of production rules for our CFG are: $\{\boldsymbol{S} \rightarrow \mathbf{0 0 A 1}, A \rightarrow \boldsymbol{\varepsilon}, A \rightarrow \mathbf{1} A, A \rightarrow \mathbf{0} A\}$

John Tinnerholm
 Jonas Wallgren

www.liu.se

LINKÖPING
UNIVERSITY

References

Hopcroft, J. E. (2008). Introduction to automata theory, languages, and computation. Pearson Education India.
Aho, A. V., Sethi, R., \& Ullman, J. D. (1986). Compilers, principles, techniques. Addison wesley, 7(8), 9.

