# Introduction to formal languages and automata theory. Short introduction to Lab 1

John Tinnerholm & Jonas Wallgren



# Agenda

- Hour I
  - Brief introduction to Automata Theory and Formal languages
  - Some hints for Lab 1
- Hour 2
  - Problem solving / Lab 1
    - (See exercises on the course homepage)



# A Formal Language

- Consists of words
  - A.k.a Strings, Symbol sequence?
- A word consists of letters
  - A.k.a Symbols, Glyphs
  - Do not need to be what we think about as letters
- Must be well-formed
- Classes of languages exist
  - More about this later in the course



# What is a Letter and an Alphabet?

- Letter (Symbol, Glyph,...)
- Alphabet usually denoted with the Greek letter big sigma
- EX:

$$-\Sigma = \{A, B\}$$



#### Words

- From these definitions we know that AAA, ABA and ABBBBA are words in <u>our</u> language, assuming it is well formed
- A formal language is the set of the possibility infinite words we can construct from our alphabet
- EX:

$$-\Sigma = \{A, B\}$$

- Some possible words
  - $-W = \{A, AA, AAA, AAAA, ....\}$



## What is Automata?



TDDD55 Lesson 1 2019-11-07 7

### **Examples of Automata**

- Your Computer
  - It is a Turing machine
- The Coffee Machine
  - Finite State Machine (FSM). However, might as well be a Turing machine as well ⊗
- Different classes of Automata
  - Read more in introduction to Automata Theory, Languages, and Computation ☺
  - Chapter 1 & Chapter 2 are relevant for this course. Focus on concepts not proofs/lemmas¹.
  - Formal Languages and Automata Theory, 6 credits (TDDD14)
- For Lab 1 we deal with FA and regular languages. More specifically regular expressions
  which we use to specify our Automata that does tokenizing!



## What is Automata Theory?

- It is the theory/study of Automata
- In textbooks Automata usually looks like transition diagrams
- Moore and Mealy machines are a variant of automata with output ©
  - Moore
    - The Output is associated with state
  - Mealy
    - The Output is associated with transition from one state to the next



# Digital Logic

- Digital Logic is a language
- Alphabet
  - $-\Sigma = \{0,1\}$
- Words:
  - **-** {01,10,11...}

# State Diagrams/Finite Automaton (FA)

- Directed graph (Digraph)
  - Set of states:
  - Set of transitions:
- A string is accepted by a **FA (Finite Automaton)** if we go from the start state to some accepted state
- Nondeterministic finite automaton(NFA)
  - Theoretical
  - Can be simulated



# **Practical Applications**



TDDD55 Lesson 1 2019-11-07 12

# **Applications**

- Regular expressions
- Digital circuits
- Computers
- Compilers
- •



# **Compiler Pipeline**





# Lab 1





# Lab 2





# Regular expressions and FA

- What is accepted by FA can also be described by a regular expression!
- Important. The limitations of finite automata also applies to regular expressions
- Finite automata can only count.
- You can't parse using regular expressions!



# Dictionary. Some short terms explained

- $\Sigma$  = Alphabet, sequence of symbols (Big Sigma)
- $\mathbf{Q}$  = The set of states in our FA
- $\delta$  = State transition function (Little delta)
- F = Set of final states, or you can say accept states
- $q_0$  = Initial state
- FA = Finite Automata
- NFA = None deterministic finite automata
- DFA = Deterministic finite automata



# Dictionary. Some short terms explained

- $\varepsilon = \text{Empty string (Small Epsilon)}$ 
  - AεBεC ⇔ ABC
- \* = The Kleene star
- AB = Juxtaposition (Concatenation) between string A and B
- + and |
  - In the tradition of the text (Formal languages): + means "or" (|)
  - It might also mean concatenation/juxtaposition in some literature
    - Please state what definition you use!



# Technique to generate NFA from regular expression



#### Converting Regular Expresisons to NFA: Thompsons algorithm

- Converts regular expressions into a corresponding NFA
- Not a part of the course but might be useful to learn anyway
  - Usually inutitive approaches work





TDDD55 Lesson 1 2019-11-07 22

- Instructions:
  - https://www.ida.liu.se/~TDDD55/laboratories/instructions/lab1.html
- Clone the lab from
  - https://gitlab.liu.se/tddd55/tddd55-lab
- It is important to consult the documentation and not attempt to make progress by trial and error!
- Remember to also handle tabs (\t)



- Lab 1 consists of several files
  - main.cc
  - Makefile
  - Makefile.dependencies
  - scanner.h
  - scanner.l
- scanner.l is the only file that you need to modify



- To Compile:
  - Type make at the directory where the files are
- Test the lab by executing:
  - ./scanner ./test/<file-you-want-to-run>



- Scanner specification via regular expressions
- Some definitions that <u>usually</u> means the same thing
  - Tokenizer, Lexical analyser, Scanner
- Necessary to escape special tokens (Or rather token that has a meaning in Flex)
- Try the examples from the Flex manual
  - https://www.ida.liu.se/~TDDB44/laboratories/instructions/\_static/flex/index.html
- Remember to also handle tabulation "\t"



- An Integer with a dot
  - INTDOT  $[0-9]+\$ .
- An Integer
  - INTEGER [0-9]+
- A Integer or an an Integer with a dot
  - INTEGER OR INTDOT (INTEGER) (INTDOT)
- Nested comments might be hard.
  - **Tip:** Read up on Flex start conditions. See chapter 10 in the flex manual.



# **Extended solution proposals**



## Extended solution proposal to Exercise 2.4

- We can write L1 as the following regular expression: a)  $L_1 = \{x \in \{0,1\}^* \mid x \text{ ends in } 00\}$ 
  - -(0|1)\*00
- From this we define our NFA
  - From our starting state we can select between two paths
    - 0\* or 1\*
  - For oo. We simply go forward two steps



29

# Resulting NFA



Note not according to Thompson's algorithm

| Here, I have removed a | : |
|------------------------|---|
| moves for clarity!     |   |

| State     | 0         | 1         |
|-----------|-----------|-----------|
| <b>S1</b> | {S1,S2}   | <b>S1</b> |
| <b>S2</b> | <b>S3</b> | <b>S1</b> |
| S3        | <b>S1</b> | <b>S2</b> |



0

# Extended solution proposal to Exercise 2.4

- Deriving a DFA
- $(Q, \Sigma, \delta, q_0, F)$ 
  - Alphabet:  $\Sigma = \{0, 1\}$
  - Transition function:  $\delta$  See next slide
  - States:  $Q = \{S_1, S_2, S_3\} / Intuition$ : We have to handle at least 3 tokens
  - Accept states:  $F = \{S_3\}$ 
    - S1 -> S2 -> S3 for the input 00



#### State transition table for our transition function: $\delta$

#### The state transistion table

| State Input | 0  | 1         |
|-------------|----|-----------|
| S1          | S2 | S1        |
| S2          | S3 | <b>S1</b> |
| S3          | S3 | <b>S1</b> |

Alphabet:  $\Sigma = \{0, 1\}$ 

Transition function:  $\delta$ 

States: **Q** = **{S1,S2,S3}** 

Accept states: **F** = **{S3}** 



## Extended solution proposal for 6.1

- Given the following regular expressions
  - $-00(1|0)^*1$
  - $-101(101)^*101(010)^*$
  - $-(11|010)^*11(00|11)^*$
- Find Context Free Grammars(CFG) that correspond to the word that is accepted by the regular expression
- If there are any insecurities regarding CFG and production rules, see lecture 3



# Regular Expression 6.1 A

- $00(1 \mid 0)^* 1$
- For this expression we shall first consider the types of strings we can accept
- We know that our alphabet is:
  - $-\Sigma = \{0,1\}$
- Let's derive a set of words that we would accept:
  - **-** {001, 0001, 00101, ...}
- Note the Kleene star \* and |
  - Kleene star \* allows the empty string



## Deriving a CFG for 6.1 A

- $00(1|0)^*1$
- Intuition
  - From the expression above we notice that we always need oo as a prefix
  - Likewise, the suffix must be 1
- Rule 1
  - $-S \rightarrow 00A1$
  - We do not yet bother with what A should be



## Deriving CFG for 6.1 A

- $00(1|0)^*1$ 
  - We know that 1|0 means a 1 or zero
  - From this we know that  $(1|0)^*$  gives the set:
    - {\varepsilon,0,1,00,01,10,11,001,...}
    - $2^N$  Different combinations where N is positive infinity
- Zero (ε) times gives us:
  - $-001 \Leftrightarrow 00\varepsilon 1$  So we can introduce the rule A  $\rightarrow \varepsilon$



# Deriving Rules for 6.1 A

- $S \rightarrow 00A1 \& A \rightarrow \varepsilon$ 
  - Now we look at  $00(\mathbf{1}|\mathbf{0})^*$  1 again
  - $-(1|0)^*/\{\epsilon, 10, 110, 11110, ...\}$
- For the entire expression we would have 00101 for 10
  - Notice that we need flexibility here. We can't simply state that A is 10. The reason is that A might be 110 or 1110
  - If we say  $A \rightarrow 1A$  or  $A \rightarrow 0A$  we get this flexibility
- Set of production rules for our CFG are:  $\{S \to 00A1, A \to \varepsilon, A \to 1A, A \to 0A\}$



# John Tinnerholm Jonas Wallgren

www.liu.se



#### References

Hopcroft, J. E. (2008). *Introduction to automata theory, languages, and computation*. Pearson Education India.

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, techniques. *Addison wesley*, 7(8), 9.

