
Lesson 1
Introduction to formal languages and automata theory

Agenda

• Hour I

– Brief introduction to Automata Theory and Formal languages

– Some hints for Lab 1

• Hour 2

– Problem solving (See exercises on the course homepage)

2019-11-07 2TDDD55 Lesson 1

A Formal Language

• Consists of words

– A.k.a Strings, Symbol sequence?

• A word consists of letters

– A.k.a Symbols, Glyphs

– Do not need to be what we think about as letters

• Must be well-formed

• Classes of languages exist

– More about this later in the course

2019-11-07 3TDDD55 Lesson 1

What is a Letter and an Alphabet?

• Letter (Symbol, Glyph,…)

• Alphabet usually denoted with the Greek letter big sigma

• EX:

– Σ = {A, B}

2019-11-07 4TDDD55 Lesson 1

Word and Words

• From these definitions we know that AAA, ABA and ABBBBA are words in our
language, assuming it is well formed

• A formal language is the set of the possibility infinite words we can construct
from our alphabet

2019-11-07 5TDDD55 Lesson 1

What is Automata?

Examples of Automata

• Your Computer

– It is a Turing machine

• The Coffee Machine

– Finite State Machine (FSM). However, might as well be a Turing machine as well 

• Different classes of Automata

– Read more in introduction to Automata Theory, Languages, and Computation ☺

– Chapter 1 & Chapter 2 are relevant for this course. Focus on concepts not
proofs/lemmas.

– Formal Languages and Automata Theory, 6 credits (TDDD14)

• For Lab 1 we deal with FA and regular languages. More specifically regular expressions
which we use to specify our Automata that does tokenizing!

2019-11-07 7TDDD55 Lesson 1

What is Automata Theory?

• It is the theory/study of Automata

• In textbooks Automata usually looks like transition diagrams

• Moore and Mealy machines are a variant of automata with output ☺

– Moore

• The Output is associated with state

– Mealy

• The Output is associated with transition from one state to the next

2019-11-07 8TDDD55 Lesson 1

Digital Logic

• Alphabet

– Σ={0,1}

• Words:

– {01,10,11…}

2019-11-07 9TDDD55 Lesson 1

State Diagrams/Finite Automaton (FA)

• Directed graph (Digraph)

– Set of states:

– Set of transitions:

• A string is accepted by a FA if we go from the start state to some accepted state

• Nondeterministic finite automaton(NFA)

2019-11-07 10TDDD55 Lesson 1

Practical Applications

Applications

• Regular expressions

• Digital circuits

• Computers

• Compilers

2019-11-07 12TDDD55 Lesson 1

Compiler Pipeline

2019-11-07 13TDDD55 Lesson 1

Lexer Parser
String Tokens ???

Lab 1

2019-11-07 14TDDD55 Lesson 1

Lexer Parser
String Tokens ???

Lab 2

2019-11-07 15TDDD55 Lesson 1

Lexer Parser
String ASTTokens

Regular expressions and FA

• What is accepted by FA can also be described by a regular expression!

• Important. The limitations of finite automata also applies to regular
expressions

• Finite automata can only count.

• You can’t parse using regular expressions!

2019-11-07 16TDDD55 Lesson 1

Dictionary. Some short terms explained

• Σ = Alphabet, sequence of symbols (Big Sigma)

• Q = The set of states in our FA

• 𝜹 = State transition function (Little delta)

• F = Set of final states, or you can say accept states

• 𝑞0 = Initial state

• FA = Finite Automata

• NFA = None deterministic finite automata

• DFA = Deterministic finite automata

2019-11-07 17TDDD55 Lesson 1

Dictionary. Some short terms explained

• ε = Empty string (Small Epsilon)

– AεBεC  ABC

• * = The Kleene star

• 𝐴𝐵 = Juxtaposition or concatenation between string A and B

• + = |

– In the tradition of the text (Formal languages): + means or (|)

– It might also mean concatenation/juxtaposition in some literature

• Please state what definition you use!

2019-11-07 18TDDD55 Lesson 1

Hints for Lab 1

Hints for Lab 1

• Instructions:

– https://www.ida.liu.se/~TDDD55/laboratories/instructions/lab1.html

• Clone the lab from

– https://gitlab.liu.se/tddd55/tddd55-lab

• It is important to consult the documentation and not attempt to make progress
by trial and error!

2019-11-07 20TDDD55 Lesson 1

https://gitlab.liu.se/tddd55/tddd55-lab

Hints for Lab 1

• Lab 1 consists of several files

– main.cc

– Makefile

– Makefile.dependencies

– scanner.h

– scanner.l

• scanner.l is the only file that you need to modify

2019-11-07 21TDDD55 Lesson 1

Hints for Lab 1

• To Compile:

– Type make at the directory where the files are

• Test the lab by executing:

– ./scanner ./test/<file you want to run>

2019-11-07 22TDDD55 Lesson 1

Hints for Lab 1

• Scanner specification via regular expressions

• Some definitions that usually means the same thing

– Tokenizer, Lexical analyser, Scanner

• Necessary to escape special tokens (Or rather token that has a meaning in Flex)

• Try the examples from the Flex manual

– https://www.ida.liu.se/~TDDB44/laboratories/instructions/_static/flex/in
dex.html

2019-11-07 23TDDD55 Lesson 1

Hints for Lab 1

• An Integer with a dot

– INTDOT [0-9]+\.

• An Integer

– INTEGER [0-9]+

• A Integer or an an Integer with a dot

– INTEGER_OR_INTDOT (INTEGER)|(INTDOT)

• Nested comments might be hard. Tip: Read up on Flex start conditions. See
chapter 10 in the flex manual.

2019-11-07 24TDDD55 Lesson 1

Extended solution proposals

Extended solution proposal to Exercise 2.4

• We can write L1 as the following regular expression:

– (0|1)*00

• From this we define our NFA

– From our start state we can select between two paths

• 0* or 1*

– For 00. We simply go forward two steps

2019-11-07 26TDDD55 Lesson 1

Resulting NFA

2019-11-07 27TDDD55 Lesson 1

S1 S2 S3

0

1

0

0

State 0 1

S1 {S1,S2} S1

S2 S3 S1

S3 S1 S2

Accepted state

Note not according to
Thompsons algorithm

Here, I have removed ε
moves for clarity!

0

1

Extended solution proposal to Exercise 2.4

• Deriving a DFA

• 𝑄 , Σ , 𝛿 , 𝑞0 , 𝐹

– Alphabet: Σ = {0, 1}

– Transition function: 𝜹 See next slide

– States: Q = {S1,S2,S3} //Intuition: We have to handle atleast 3 tokens

– Accept states: F = {S3}

• 𝑆1 −> 𝑆2 −> 𝑆3 for the input 00

2019-11-07 28TDDD55 Lesson 1

State transition table for our transition function: 𝛿

2019-11-07 29TDDD55 Lesson 1

State 0 1

S1 S2 S1

S2 S3 S1

S3 S3 S1

Alphabet: Σ = {0, 1}
Transition function: 𝜹 The state transistion table
States: Q = {S1,S2,S3}
Accept states: F = {S3}

Extended solution proposal for 6.1

• Given the following regular expressions

– 00 1|0 ∗ 1

– 101 101 ∗ 101 010 ∗

– (11|010)∗11 00|11 ∗

• Find Context Free Grammars(CFG) that correspond to the word that is
accepted by the regular expression

• If there are any insecurities regarding CFG and production rules

– See lecture 3

2019-11-07 30TDDD55 Lesson 1

Regular Expression 6.1 A

• 00 1 | 0 ∗ 1

• For this expression we shall first consider the types of strings we can accept

• We know that our alphabet is:

– Σ={0,1}

• Let’s derive a set of words that we would accept:

– {001, 0001, 00101}

• Note the Kleene star * and |

– Kleene star * allows the empty string

2019-11-07 31TDDD55 Lesson 1

Deriving a CFG for 6.1 A

• 00 1|0 ∗ 1

• Intuition

– From the expression above we notice that we always need 00 as a prefix

– Likewise the suffix must be 1

• Rule 1

– S → 00𝐴1

– We do not yet bother with what A should be

2019-11-07 32TDDD55 Lesson 1

Deriving CFG for 6.1 A

• 00 𝟏|𝟎 ∗ 1

– We know that 1|0 means a 1 or zero

– From this we know that (𝟏|𝟎)* gives the set:

• {ε ,0,1,00,01,10,11,001,…}

• 2𝑁 Different combinations where N is positive infinity

• Zero (ε) times gives us:

– 001 00ε1 So we can introduce the rule A → ε

2019-11-07 33TDDD55 Lesson 1

Deriving Rules for 6.1 A

• 𝑆 → 00𝐴1 & 𝐴 → ε

– Now we look at 00 𝟏|𝟎 ∗ 1 again

– 𝟏|𝟎 ∗ //{ε, 10, 110,11110,…}

• For the entire expression we would have 00101 for 10

– Notice that we need flexibility here. We can’t simply state that A is 10. The
reason is that A might be 110 or 1110

– If we say 𝐴 → 1𝐴 𝒐𝒓 𝐴 → 0𝐴 we get this flexibility

• Set of production rules for our CFG are: {𝑺 → 𝟎𝟎𝑨𝟏, 𝑨 → 𝛆, 𝑨 → 𝟏𝑨 , 𝑨 → 𝟎𝑨}

2019-11-07 34TDDD55 Lesson 1

www.liu.se

John Tinnerholm

Jonas Wallgren

References

Hopcroft, J. E. (2008). Introduction to automata theory, languages, and
computation. Pearson Education India.

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, techniques.
Addison wesley, 7(8), 9.

2019-11-07 36TDDD55 Lesson 1

