TDDDS55- Compilers and
Interpreters
Lesson 1

Zeinab Ganjel

(zeinab.ganjei@liu.se)

Department of Computer and Information
Science
Linkoping University

Purpose of Lessons

Practice theory
Introduce the laboratory assignments

Prepare for the final examination.
Prepare by reading the laboratory instructions, the course book, and the lecture notes.
All the laboratory instructions and material available in the course directory, ~TDDD55/lab/

or on the course homepage.

Laboratory Assignments

* In the laboratory exercises you should get some
practical experience 1n compiler construction.

* There are 4 separate assignments to complete in 4x2
laboratory hours. You will also (most likely) have to
work during non-scheduled time.

Lessons Schedule

* Formal languages and automata theory

* Formal languages and automata theory, Flex
* Intermediate code generation, Bison

* Exam preparation

Handing 1n and deadline

Demonstrate the working solutions during scheduled
SESS10ns.

* Then, hand 1n code and answers to any questions
via e-mail. One e-mail from your LiU-email per
group (subject: TDDDJ55: lab no.).

Deadline for all the assignments 1s: December 14
2017.

Sign up 1n the webreg!

Laboratory Assignments

*Lab 1 Attribute Grammars and Top-Down Parsing
* Lab 2 Scanner Specification

* Lab 3 Parser Generators

*Lab 4 Intermediate Code Generation

1. Attribute Grammars and Top-Down Parsing

Some grammar rules are given

Your task:
Rewrite the grammar (eliminate left recursion, etc.)
Add attributes and attribute rules to the grammar
Implement your attribute grammar in a C++ class
named Parser. The Parser class should contain a
method named Parse that returns the value of a single
statement 1n the language.

2. Scanner Specification

Finish a scanner specification given in
Flex(scanner.l), by adding rules for comments,
identifiers, integers, and reals.

More details 1n lesson 2.

3. Parser Generators

Finish a parser specification given in Bison
(parser.y), by adding rules for expressions,
conditions and function definitions, You also
need to augment the grammar with error
productions.

More details 1n lesson 3.

4. Intermediate Code Generation

The purpose of this assignment to learn about how
parse trees can be translated into intermediate code.
Finish a generator for intermediate code by adding
rules for some language statements.

More details in lesson 3

Hints for Laboratory
Assignment 1

Grammar for simple mathematical
eXpressions

S -> E <end of line> S Single expression

| <end of file> No more input
E->E+E Addition

|E-E Subtraction

|[E*E Multiplication

|E/E Division

|[E*E Exponentiation

|- E Unary minus

| (E) Grouping

|id(E) Function call

Not Suitable for a Top-Down Technique

No operator precedence
eg E>E+E
|E*E
No operator associativity
eg.EME
Left recursion
eg. E->E+E

Ambiguity

Rewriting the Grammar

Use one non-terminal for each precedence
level.

E:=E+E|E-E|T

T:=T*T|T/T
(Left) Associativity: using (left-)recursive

production
E:=E+E|E-E|T =>E:=E+T|E-T|T

See for instance:
http.//www.lix.polytechnique.fr/~catuscia/teaching/cqg428/02Spring/le
cture _notes/L03.html

Rewriting the Grammar (2)

The grammar obtained so far has left recursion
Not suitable for a predictive top-down parser
Transform the grammar to right recursive form:
A=A a | B (where may not be preceded by A)
1s rewritten to
A=A
A i=aAe

See Lecture 5 Syntax Analysis, Parsing

More details: http.//en.wikipedia.org/wiki/Left _recursion

Attribute Grammars

Define attributes for the productions of a formal
grammar
Example:
S::=E {display(E.val); }
E:=E+T {E.val=E.val +T.val; }
| T { E.val =T.val; }
T:=T*F {Tval="T.val *F.val; }
| F { T.val =F.val; }
F:=(E) {F.val=E.val;}
| num { F.val = num.val; }

Implementation: main.cc

int main(void) {
Parser parser;
double val;
while (1) {

try {
cout << "Expression: " << flush;

val = parser.Parse();
cout << "Result: " <<val <<'\n' << flush;
}
catch (ScannerError& e) {
cerr << e << '\n' << flush;
parser.Recover();

}
catch (ParserError) { parser.Recover(); }
catch (ParserEndOfFile) {
cerr << "End of file\n" << flush; exit(0); }
}

Implementation: lex.cc and lex.hh

The files lex.cc and lex.hh implement the lexer
You don’t need to change anything in those files.

Implementation : labl.cc, labl.hh

double Parser::Parse(void) {
Trace x(“Parse”);
double val = 0;

current_token = scanner.Scan();
switch (current_token.type)
{
case kldentifier:
case kNumber:
case kLeftParen:
case kMinus:
val = pExpression();
if (current_token.type != kEndOfLine)
throw ParserError();

default:
throw ParserError();

}

return val;

Implementation...

Add one function for each non-terminal in the

grammar to your Parser class.
Also implement some simple error recovery in your

Parser class.
See Lecture 5 for details.

double Parser::pExpression(void) {
switch (current_token.type) {

Laboratory skeleton

~TDDD55

/lab

/doc
Documentation for the assignments.

/labl

Contains all the necessary files to complete
the first assignment

/lab?2

Contains all the necessary files to complete
the second assignment

/lab3-4

Contains all the necessary files to complete
assignment three and four

Installation

Take the following steps in order to install the lab skeleton on your

system:
Copy the source files from the course directory onto your local account:

mkdir TDDD55

. .cp, -r ~TDDD55/1lab TDDD5 i .
You might Biso have to loadl:-' some mogules Emore information in the
laboratory instructions).

