
TDDD55- Compilers and
Interpreters
Lesson 1

Zeinab Ganjei
(zeinab.ganjei@liu.se)

Department of Computer and Information
Science

Linköping University

Purpose of Lessons

• Practice theory

• Introduce the laboratory assignments

• Prepare for the final examination.

Prepare by reading the laboratory instructions, the course book, and the lecture notes.

All the laboratory instructions and material available in the course directory, ~TDDD55/lab/

or on the course homepage.

Laboratory Assignments

• In the laboratory exercises you should get some
practical experience in compiler construction.

• There are 4 separate assignments to complete in 4x2
laboratory hours. You will also (most likely) have to
work during non-scheduled time.

Lessons Schedule

• Formal languages and automata theory
• Formal languages and automata theory, Flex
• Intermediate code generation, Bison
• Exam preparation

Handing in and deadline

• Demonstrate the working solutions during scheduled
sessions.

• Then, hand in code and answers to any questions
via e-mail. One e-mail from your LiU-email per
group (subject: TDDD55: lab no.).

• Deadline for all the assignments is: December 14
2017.

• Sign up in the webreg!

Laboratory Assignments

• Lab 1 Attribute Grammars and Top-Down Parsing
• Lab 2 Scanner Specification
• Lab 3 Parser Generators
• Lab 4 Intermediate Code Generation

1. Attribute Grammars and Top-Down Parsing

• Some grammar rules are given
• Your task:

• Rewrite the grammar (eliminate left recursion, etc.)
• Add attributes and attribute rules to the grammar
• Implement your attribute grammar in a C++ class

named Parser. The Parser class should contain a
method named Parse that returns the value of a single
statement in the language.

2. Scanner Specification

• Finish a scanner specification given in
Flex(scanner.l), by adding rules for comments,
identifiers, integers, and reals.

• More details in lesson 2.

3. Parser Generators

• Finish a parser specification given in Bison
(parser.y), by adding rules for expressions,
conditions and function definitions, You also
need to augment the grammar with error
productions.

• More details in lesson 3.

4. Intermediate Code Generation

• The purpose of this assignment to learn about how
parse trees can be translated into intermediate code.

• Finish a generator for intermediate code by adding
rules for some language statements.

• More details in lesson 3

Hints for Laboratory
Assignment 1

Grammar for simple mathematical
expressions

S -> E <end of line> S Single expression

| <end of file> No more input

E -> E + E Addition

| E - E Subtraction

| E * E Multiplication

| E / E Division

| E ^ E Exponentiation

| - E Unary minus

| (E) Grouping

| id (E) Function call

| id Symbolic constant

| num Numeric value

Not Suitable for a Top-Down Technique

• No operator precedence
• e.g E -> E + E
 | E * E

• No operator associativity
• e.g. E ^ E

• Left recursion
• e.g. E -> E + E

• Ambiguity

Rewriting the Grammar

•Use one non-terminal for each precedence
level.

 E ::= E + E | E – E | T
 T ::= T * T | T / T
•(Left) Associativity: using (left-)recursive
production

 E ::= E + E | E – E | T => E ::= E + T | E – T | T

See for instance:
http://www.lix.polytechnique.fr/~catuscia/teaching/cg428/02Spring/le
cture_notes/L03.html

Rewriting the Grammar (2)

• The grammar obtained so far has left recursion
• Not suitable for a predictive top-down parser

• Transform the grammar to right recursive form:
A ::= A α | β (where β may not be preceded by A)
is rewritten to
A ::= β A’
A’ ::= α A’ | ε

See Lecture 5 Syntax Analysis, Parsing

More details: http://en.wikipedia.org/wiki/Left_recursion

Attribute Grammars

• Define attributes for the productions of a formal
grammar

• Example:
S ::= E { display(E.val); }
E ::= E + T { E.val = E.val + T.val; }
 | T { E.val = T.val; }
T ::= T * F { T.val = T.val * F.val; }
 | F { T.val = F.val; }
F ::= (E) { F.val = E.val; }
 | num{ F.val = num.val; }

See course book and Lecture 8 for details.

See also: http://en.wikipedia.org/wiki/Attribute_grammar

Implementation: main.cc

int main(void) {
Parser parser;
double val;
while (1) {

 try {
 cout << "Expression: " << flush;
 val = parser.Parse();

 cout << "Result: " << val << '\n' << flush;
}

 catch (ScannerError& e) {
 cerr << e << '\n' << flush;
 parser.Recover();

}
 catch (ParserError) { parser.Recover(); }

 catch (ParserEndOfFile) {
cerr << "End of file\n" << flush; exit(0); }

}
}

}

Implementation: lex.cc and lex.hh

• The files lex.cc and lex.hh implement the lexer
• You don’t need to change anything in those files.

Implementation : lab1.cc, lab1.hh

double Parser::Parse(void) {
Trace x(“Parse”);
double val = 0;

 current_token = scanner.Scan();
switch (current_token.type)
{

case kIdentifier:
case kNumber:
case kLeftParen:
case kMinus:

val = pExpression();
if (current_token.type != kEndOfLine)

 throw ParserError();

 default:
throw ParserError();

}
return val;

}

Implementation…

• Add one function for each non-terminal in the
grammar to your Parser class.

• Also implement some simple error recovery in your
Parser class.

• See Lecture 5 for details.

double Parser::pExpression(void) {
switch (current_token.type) {
...
}

}

Laboratory skeleton
~TDDD55

/lab

 /doc

Documentation for the assignments.

 /lab1

Contains all the necessary files to complete
the first assignment

 /lab2

Contains all the necessary files to complete
the second assignment

 /lab34

Contains all the necessary files to complete
assignment three and four

Installation

• Take the following steps in order to install the lab skeleton on your
system:
– Copy the source files from the course directory onto your local account:

– You might also have to load some modules (more information in the
laboratory instructions).

mkdir TDDD55
cp r ~TDDD55/lab TDDD55

