
TDDD55: Compilers and
Interpreters

Lesson 1
Filip Strömbäck (filip.stromback@liu.se)

Department of Computer and Information Science
Linköping University

mailto:filip.stromback@liu.se

Purpose of lessons

• Practice theory
• Introduce the laboratory assignments
• Prepare for the final examination

Prepare by reading the lab instructions, the course
book and lecture notes.

All instructions and material available in the course
directory (~TDDD55/lab/) or on the course
homepage.

Schedule

1. Formal languages and automata theory

2. Formal languages and automata theory, Flex

3. Bison and intermediate code generation

4. Exam preparation

5. Exam preparation

Laboratory assignments

• Goal: Get some practical experience in
compiler construction

• 4 assignments to complete in 4x2 sessions →
non-scheduled time required

1. Attribute Grammars and Top-Down parsing

2. Scanner Specification

3. Parser Generators

4. Intermediate Code Generation

Handing in and deadline

• Demonstrate during scheduled sessions

• Then, hand in code and answers to any
questions in the assignment via e-mail. One e-
mail per group, subject: TDDD55: Lab n. From
your LiU-email.

• Deadline: 21st December

• Sign up in Webreg!

Skeleton
~TDDD55

/lab

/doc

Documentation for the assignments.

/lab1

Contains all the necessary files to complete the first
assignment

/lab2

Contains all the necessary files to complete the
second assignment

/lab3-4

Contains all the necessary files to complete
assignment three and four

Copy to your home directory using:
cp -r ~TDDD55/lab .

Lab 1

• Some grammar rules given:

• Rewrite the grammar to LL(1)

• Add attribute rules to the grammar

• Implement the LL(1) grammar and the
attributes in a C++-class named Parser. Parser
shall contain a method Parse() which returns
the value of a single statement in the
language.

Lab 2

• Finish a scanner specification in Flex
(scanner.l) by adding rules for comments,
identifiers, integers and reals.

• More details in lesson 2.

Lab 3

• Finish a parser specification in Bison (parser.y)
by adding rules for expressions, conditions,
function definitions, etc.

• You also need to add error productions.

• More details in lesson 3.

Lab 4

• Generate intermediate code from a parse tree.

• Finish a generator for intermediate code by
adding rules for some language statements.

• More details in lesson 3.

Lab 1: Problems in the given grammar

• Ambiguous

• Contains left recursion

• No operator precedence

• No operator associativity

Not suitable to a top-down approach

Lab 1: Rewriting the grammar

• Use one non-terminal for each precedence level:

E -> E + E | E – E | T

T -> T * T | T / T

• Associativity (left):

E -> E + T | E – T | T

• See for example:
http://www.lix.polytechnique.fr/~catuscia/teach
ing/cg428/02Spring/lecture_notes/L03.html

Lab 1: Rewriting the grammar

• The grammar so far is left-recursive and
therefore not suitable for a top-down parser.

• Transform the grammar:

A -> Aα | β (where b may not be preceded by A)

Rewritten to

A -> βA’

A’-> αA’ | ε

• See Lecture 5 for details

Lab 1: Attribute Grammars

• Define attributes for the productions

• Example:

S -> E { display(E.val); }

E -> E1 + T { E.val = E1.val + T.val; }

T -> T1 * F { T.val = T1.val * F.val; }

F -> (E) { F.val = E.val; }

| num { F.val = num.val; }

• See the course book and Lecture 8 for details.

Lab 1: Implementation

• Given main function:
int main(void) {

Parser parser; double val;

while (1) {

try {

cout << "Expression: " << flush;

val = parser.Parse();

cout << "Result: " << val << '\n' << flush;

} catch (ScannerError& e) {

cerr << e << '\n' << flush;

parser.Recover();

} catch (ParserError) {

parser.Recover();

} catch (ParserEndOfFile) {

cerr << "End of file\n" << flush; exit(0);

}

}

}

Lab 1: Implementation

• lex.cc and lex.hh implement the lexer.

• The lexer reads from standard input

• No need to change anything in these files

Lab 1: Implementation
• lab1.cc and lab1.hh shall

contain the Parser class
• The function Parse() is

used to start parsing an
expression.

double Parser::Parse() {

Trace x(“Parse”);

double val = 0;

current_token = scanner.Scan();

switch (current_token.type) {

case kIdentifier:

case kNumber:

case kLeftParen:

case kMinus:

val = ParseP();

if (current_token.type != kEndOfLine)

throw ParserError();

break;

default:

throw ParserError();

}

return val;

}

Lab 1: Implementation

• One function for each non-terminal in the
grammar.

• Implement some simple error recovery in your
Parser class.

• See lecture 5 for details.

