TDDD55: Compilers and
Interpreters

Lesson 1

Filip Stromback (filip.stromback@liu.se)
Department of Computer and Information Science
Linkdping University

mailto:filip.stromback@liu.se

Purpose of lessons

* Practice theory
* Introduce the laboratory assignments
* Prepare for the final examination

Prepare by reading the |lab instructions, the course
book and lecture notes.

All instructions and material available in the course
directory (~TDDD55/lab/) or on the course
homepage.

A S

Schedule

Formal languages and automata theory
Formal languages and automata theory, Flex
Bison and intermediate code generation
Exam preparation

Exam preparation

Laboratory assignments

* Goal: Get some practical experience in
compiler construction

* 4 assignments to complete in 4x2 sessions =
non-scheduled time required

Attribute Grammars and Top-Down parsing
Scanner Specification
Parser Generators

s W

Intermediate Code Generation

Handing in and deadline

Demonstrate during scheduled sessions

Then, hand in code and answers to any
guestions in the assignment via e-mail. One e-
mail per group, subject: TDDD55: Lab n. From
your LiU-email.

Deadline: 215t December
Sign up in Webreg!

Skeleton

~TDDD55 Copy to your home directory using:
| lab cp -r ~TDDD55/1ab

/doc
Documentation for the assignments.

/labl
Contains all the necessary files to complete the first
assignment

/lab2
Contains all the necessary files to complete the
second assignment

- /lab3-4

Contains all the necessary files to complete
assignment three and four

Lab 1

Some grammar rules given:
Rewrite the grammar to LL(1)
Add attribute rules to the grammar

Implement the LL(1) grammar and the
attributes in a C++-class named Parser. Parser
shall contain a method Parse() which returns
the value of a single statement in the
language.

Lab 2

* Finish a scanner specification in Flex
(scanner.l) by adding rules for comments,
identifiers, integers and reals.

e More details in lesson 2.

Lab 3

* Finish a parser specification in Bison (parser.y)
by adding rules for expressions, conditions,

function definitions, etc.
* You also need to add error productions.

e More details in lesson 3.

Lab 4

* Generate intermediate code from a parse tree.

* Finish a generator for intermediate code by
adding rules for some language statements.

e More details in lesson 3.

Lab 1: Problems in the given grammar

 Ambiguous

* Contains left recursion

* No operator precedence
* No operator associativity

Not suitable to a top-down approach

Lab 1: Rewriting the grammar

* Use one non-terminal for each precedence level:
E>E+E|E—-E|T
T>T*T|T/T

e Associativity (left):
E>E+T|E-T|T

* See for example:

http://www.lix.polytechnique.fr/~catuscia/teach
ing/cg428/02Spring/lecture _notes/L03.html/

Lab 1: Rewriting the grammar

e The grammar so far is left-recursive and
therefore not suitable for a top-down parser.

* Transform the grammar:

A ->Aa | B (where b may not be preceded by A)
Rewritten to
A -> BA’
A->aA | e
* See Lecture 5 for details

Lab 1: Attribute Grammars

* Define attributes for the productions

 Example:
S->E { display(E.val); }
E->E1+T {Eval=Elval+Tval;}
T->T1*E {T.val=T1.val * Fval; }
F->(E) { Fval = Eval; }
| num { Fval = num.val; }

e See the course book and Lecture 8 for details.

Lab 1: Implementation

e Given main function:

int main(void) {
Parser parser; double val;

while (1) {
try {
cout << "Expression: " << flush;
val = parser.Parse();
" << val << '\n' << flush;

cout << "Result:

} catch (ScannerErroré& e) {
cerr << e << '\n' << flush;
parser.Recover () ;

} catch (ParserError) {
parser.Recover() ;

} catch (ParserEndOfFile) {
cerr << "End of file\n" << flush; exit(0) ;

}

Lab 1: Implementation

* |lex.cc and lex.hh implement the lexer.

* The lexer reads from standard input
* No need to change anything in these files

Lab 1: Implementation

 |abl.cc and labl.hh shall

double Parser::Parse() { contain the Parser class
Trace x(“Parse”);] .
double val = 0 * The function Parse() is
current token = scanner.Scan(); used to start parsing an
switch (current token.type) { expressk)n.

case kIdentifier:
case kNumber:
case kLeftParen:
case kMinus:
val = ParseP();
1f (current token.type != kEndOfLine)
throw ParserError();
break;
default:
throw ParserError();

}

return val;

Lab 1: Implementation

* One function for each non-terminal in the
grammar.

* Implement some simple error recovery in your
Parser class.

e See lecture 5 for details.

