TDDD55: Compilers and
Interpreters

Lesson 3

Filip Stromback (filip.stromback@liu.se)
Department of Computer and Information Science
Linkdping University

mailto:filip.stromback@liu.se

A S

Schedule

Formal languages and automata theory
Formal languages and automata theory, Flex
Bison and intermediate code generation
Exam preparation

Exam preparation

Laboratory assignments

* Goal: Get some practical experience in
compiler construction

* 4 assignments to complete in 4x2 sessions =
non-scheduled time required

Attribute Grammars and Top-Down parsing
Scanner Specification
Parser Generators

s W

Intermediate Code Generation

Handing in and deadline

 Demonstrate during scheduled sessions

 Then, hand in code and answers to any
guestions in the assignment via e-mail. One e-

mail per group, subject: TDDD55: Lab n. From
your LiU-email.

e Deadline: 215t December

Skeleton

~TDDD55 Copy to your home directory using:
| lab cp -r ~TDDD55/1ab

/doc
Documentation for the assignments.

/labl
Contains all the necessary files to complete the first
assignment

/lab2
Contains all the necessary files to complete the
second assignment

- /lab3-4

Contains all the necessary files to complete
assignment three and four

Lab 1

Some grammar rules given:
Rewrite the grammar to LL(1)
Add attribute rules to the grammar

Implement the LL(1) grammar and the
attributes in a C++-class named Parser. Parser
shall contain a method Parse() which returns
the value of a single statement in the
language.

Lab 2

* Finish a scanner specification in Flex
(scanner.l) by adding rules for comments,
identifiers, integers and reals.

Lab 3

* Finish a parser specification in Bison (parser.y)
by adding rules for expressions, conditions,

function definitions, etc.
* You also need to add error productions.

e More details in lesson 3.

Lab 4

* Generate intermediate code from a parse tree.

* Finish a generator for intermediate code by
adding rules for some language statements.

e More details in lesson 3.

Bison

Purpose of a parser

e Accept tokens from a scanner and verify the
syntactic correctness of the program

— Uses formal grammar for specifying the language
* Along the way, it derives information about

the program and stores it as an abstract syntax
tree (AST)

 The AST is an internal representation of the
program and augments the symbol table

Bottom-up Parsing

* Recognize the components of a program and
then combine them to form more complex
constructs until a whole program is recognized

* The parse tree is then built from the bottom
up, hence the name.

LR Parsing

A specific bottom-up technique

LR = left-to-right scan, reversed rightmost
derivation

Probably the most common and popular
technique

yacc, bison and many other parser generation
tools utilize LR parsing

Great for machines, harder for humans

Pros and Cons of LR Parsing

* Advantages
— Accepts a wide range of grammars/languages
— Well suited for automatic parser generation
— Very fast
— Generally easy to maintain

* Disadvantages
— Error handling can be tricky
— Difficult to use manually

Bison

* Bison is a general-purpose parser generator
that converts a grammar description of a
context-free grammar into a C-program to
parse the grammar

 Similar idea to flex

How it works

Bison generates a C source file, y.tab.c

parser.y Bison Compiler yv.tab.c

How it works

y.tab.c is compiled and linked with required
libraries to produce an executable, which is the
parser

y.tab.c a.out

token stream ‘E sequence of tokens

Bison specifications

Bison specifications are divided into 4 parts

oP

{

/* C declarations */

oP
—

/* Bison declarations */

%

oP

/* Grammar rules */

oP
oP

/* Additional C code */

C Declarations

e Contains macro definitions and declarations of
functions and variables that are used in the
actions in the grammar rules

* Copied to the beginning of the parser file so
that they precede the definition of yyparse

* Use #include<...> to get the declarations from
a header file. If C declarations aren’t needed,
then the %{ and %} can be omitted

Bison declarations

* Contains:

— Declarations that define terminal and non-
terminal symbols

— Data types of semantic values of various symbols
— Specify precedence

Bison specifications

Bison specifications are divided into 4 parts

.o
(o]}
/* Grammar rules */
oo
(e Je)

/* Additional C code */

Grammar rules

e Contains one or more Bison grammar rules,
and nothing else.

* Example:

— expression : expression ‘+’ expression {$SS =51 +
S3; %
 There must always be at least one grammar
rule, and the first %% (which precedes the

grammar rules) may never be omitted even if
it is the first thing in the file

Bison specifications

Bison specifications are divided into 4 parts

[oJNe)
%%

/* Additional C code */

Additional C code

* Copied verbatim to the end of the parser file,
just as the C declarations are copied to the
beginning

* This is the most convenient place to put
anything that should be in the parser file but
isn’t needed before the definition of yyparse

* For example, yylex() and yyerror() often go
here

%1

Example 1

#include <ctype.h>
#define YYSTYPE double
int yylex() ;

%}

(o)

o®
o®

line
expr

term :

fact :

$token DIGIT

expr ‘\n’ { printf(“%d\n”, $1);
expr ‘+’ term { $$ = $1 + $3;

term { $8 = $1; };

term ‘*’ fact { $$ = S1 * $3;

fact { 85 = $1; };

‘(" expr ')’ { $$ = $2; }

DIGIT;

}

}

};

Example 1 (cont)

oP
oP

int yylex () {
// A really simple lexical analyzer.
int ¢ = getchar();
if (isdigit(c)) {
yylval = c - ‘0';
return DIGIT;
}

return c;

Example 2

thing: A { printf(“seen an A”); } B;

Same as

thing: A fakename B;

fakename: /* empty */ { printf(“seen an A”); };

%1

Example 3

#define YYSTYPE double

#include <math.h>

%}

$token NUM
$left ‘-’ ‘+/
$left ‘*x’' Y/’
$right ‘#’

Example 3 (cont)

oP
oP

input : /* empty string */ | input line;

line : ‘\n’

printf (“\t%.10£\n”, $1); };
$$ = $1; }

$$ = 81 + $3; }

$$ = $1 - $3; }

$$ = 81 * $3; }

$$ = S1 / $3; }

$$ = pow($Sl, $3); }

$$ = $1; };

| expr ‘\n’
expr : NUM
expr ‘+’ expr

expr ‘-’ expr

expr ‘/’ expr

expr ‘' expr

e T e D o T s T e N e T, e T e)

I
I
| expr ‘*’ expr
I
I
I

\(I expr \)I

oe
oe

Syntax Errors

Error productions can be added

They help the compiler to recover from syntax
errors and to continue to parse

In order for the error productions to work, we
need at least one valid token after the error
symbol.

Example

— functionCall : ID ‘(' paramList ')’

| ID ‘(' error V')’;
Recover from syntax errors by discarding tokens
until it reaches the valid token.

Using Bison with Flex

* Bison and flex are desighed to work together
* Flex produces a driver program called yylex()

— #include “lex.yy.c” in the last part of bison
specification

— this gives the program yylex access to bison’s
token names

Using Bison with Flex

* Thus, do the following:
— flex scanner.1l
— bison parser.y
— cc y.tab.c -1y -11
* This will produce an a.out which is a parser
with an included scanner

Assignment 3

Parser generators

Parser Generators

* Finish a parser specification given in parser.y
by adding rules for expressions, conditions
and function definitions, ...

Functions

function : funcnamedecl parameters ‘:’ type variables functions block ‘';
{

// Set the return type of the function

// Set the function body

// Set current function to point to the parent again

funcnamedecl : FUNCTION id
{
// Check if the function is already defined, report error if so

// Create a new function information and set its parent to current
function

// Link the newly created function information to the current function
// Set the new function information to be the current function

4

Expressions and conditions

* For precedence and associativity you can
factorize the rules...

e or specify precedence and associativity at the
top of the Bison specification file. Read more
about this in the Bison reference.

Expressions - Example

expression : expression ‘+’ term

{

//
//
//
//

If any of the sub-expressions are NULL,
set $$ to NULL
Create a new Plus node and return in $$

IntegerToReal casting might be needed

Assignment 4

Intermediate code

Intermediate Code

Closer to machine code, but not machine
specific

Can handle temporary variables

Means higher portability: intermediate code
can easier be expanded to assembly code

Offers the possibility of performing code
optimizations such as register allocation

Intermediate Code

Why do we use intermediate languages?

Retargeting — Build a compiler for a new
machine by attaching a new code generator to
an existing front-end and middle part.

Optimization — reuse intermediate code
optimizers in compilers for different languages
and different machines

Code generation for different source
languages can be combined

Intermediate Languages

* Infix notation
e Postfix notation

e Three-address code
— Triples
— Quadruples

Quadruples

 We use quadruples as an intermediate
language.

 An instruction has four fields:

operator operandl operand2 result

program ex;
const

PI = 3.1415;

var
a : real;
b : real;

begin

b :=a + PI;

end

Generation

instr_list

"

g_rplus
g_rassign

g_labl

A

S1
4

P

S1
B

Quadruples

(A+B)*(C+D)-E

operstor | operandd | operand2__ | reutt
+ A B T1

+ C D T2
* T1 T2 T3
T3 E T4

Intermediate Code Generation

* The purpose of this assignment is to learn how
abstract syntax trees can be translated into
machine code.

* You are to finis a generator for intermediate
code (quadruples) by adding rules for some
language constructs.

* You will work in codegen.cc.

Binary Operations

* Create code for left expression and right
expression

* Generate either a realop or intop quad

— Type of the result is the same as the type of the
operands

— You can use currentFunction->TemporaryVariable

Array References

 The absolute address is computed as follows:
— absAddr = baseAddr + arrayTypeSize*index

* Generate code for the index expression

* You must then compute the absolute address
— You will have to create several temporary variables

— Create a quad for loading the size of the type to a
temporary

— Then generate iadd and imul quads
— Finally generate either a istore or rstore quad

If Statement

e S->if EthenS1
e S->if Ethen S1else S2

to E.true to E.true
to E.false to E.false
E.true E.true
E.false to E.next
E.false

E.next

While Statement

e S->while EdoS1

S.begin to E.true
E.code
to E.false
E.true
S1.code
to S.begin

E.false

