
TDDD55-Lesson 1
Introduction to formal languages
and automata theory and a brief

introduction to Lab 1
John Tinnerholm

Jonas Wallgren

Agenda
• Hour I

– Brief introduction to Automata Theory and Formal languages

– Some hints for Lab 1

• Hour 2

– Problem-Solving

• (See Exercises on the course homepage)

– If time permits, start with Lab-1

2024-11-08 2TDDD55 Lesson 1

Image generated by
OpenAI's DALL-E through
ChatGPT

A Formal Language
• Consists of words

– A.k.a Strings, Symbol sequence?

• A word consists of letters

– A.k.a Symbols, Glyphs

– Do not need to be what we think about as letters

• Must be well-formed

– That is, in short, conform to the rules and structures defined for it

– Natural Language Examples:

❑ I painted a nonexistent house

❖ Well-formed but does not make sense

❑ bicycle ride I

❖ Not well-formed but can be understood

• Note, theoretical terms but you may encounter them when you look for
literature yourself

• Classes of languages exist

– More about this later in the course

2023-10-30 3TDDD55 Lesson 1

Image generated by OpenAI's DALL-E through ChatGPT

What is a Letter and an Alphabet?

• Letter (Symbol, Glyph,…)

• Alphabet usually denoted with the Greek letter sigma

• EX:

– Σ = {A, B}

– Σ = 1,2,3,4

– Σ = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, … , Å, Ä Ö}

2024-11-08 4TDDD55 Lesson 1

Image generated by
OpenAI's DALL-E through
ChatGPT

Words

• From these definitions we know that AAA, ABA and ABBBBA are words in our
language, assuming it is well formed

• A formal language is the set of the possibility infinite words we can construct
from our alphabet

• EX:

– Σ = {A, B}

• Some possible words

– W = {A, AA, AAA, AAAA, ….}

2019-11-07 5TDDD55 Lesson 1

Automata?

Examples of Automata
• Your Computer

– It is a Turing machine

• The Coffee Machine

– Finite State Machine (FSM). However, it might as well be a Turing machine as1

• Different classes of Automata

– Read more in Introduction to Automata Theory, Languages, and Computation ☺

– Chapter 1 & Chapter 2 are relevant for this course

❑Focus on concepts, not proofs/lemmas2.

– Full Course

❑Formal Languages and Automata Theory, 6 credits (TDDD14)

• For Lab 1, we deal with FA and regular languages

– More specifically, regular expressions, which we use to specify our Automata that do tokenizing

2023-10-30 7TDDD55 Lesson 1

1Now, in the 2020s, even fridges might be Turing Machines

2This course focuses on the practical application of these concepts

• What is Automata Theory? • It is the theory/study of Automata

• In textbooks, Automata are usually
depicted using State Diagrams

• Moore and Mealy machines are a
variant of automata with output

– Moore

❑The Output is associated with
the state

– Mealy

❑The Output is associated with
the transition from one state
to the next

2023-10-30 8TDDD55 Lesson 1

This Photo by Unknown Author is licensed under CC BY-SA

This Photo by Unknown Author is licensed under CC BY-SA

https://isolution.pro/it/t/automata-theory/moore-and-mealy-machines/moore-e-mealy-machines
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Finite-state_machine
https://creativecommons.org/licenses/by-sa/3.0/

Digital Logic

• Digital Logic is a language

• Alphabet

– Σ={0,1}

• Words:

– {00, 01,10,11…}

• Can be described by a regular expression

– [0-1]+

2019-11-07 9TDDD55 Lesson 1

State Diagrams/Finite Automaton (FA)

• Directed graph (Digraph)

– Set of states:

– Set of transitions:

• A string is accepted by an FA (Finite Automaton) if we go from the start
state to some accepted state

• Nondeterministic finite automaton (NFA)

– Theoretical

– Can be simulated

2019-11-07 10TDDD55 Lesson 1

State Diagrams/Finite Automaton (FA)

• Nondeterministic finite automaton
(NFA)

– Theoretical

– Can be simulated

• Deterministic Finite Automaton (DFA)

• Furthermore

– A DFA is an NFA, but a DFA is not
an NFA

– DFA can be seen as a “restricted”
NFA

– NFA gives you more creative
freedom when modeling

• Ad-hoc Transitions

2023-10-30 11TDDD55 Lesson 1

NFA

S1 S2 S3

0

1 0

0

0

1

S1

S2

S3

1

0

0

1

1

0

DFA
NFA

DFA

Practical Applications

Applications

2023-10-30 13TDDD55 Lesson 1

REGULAR
EXPRESSIONS

DIGITAL
CIRCUITS

COMPUTERS COMPILERS …

Compiler Pipeline

2023-10-30 14TDDD55 Lesson 1

Lexer Parser
String Tokens ???

Lab 1

2023-10-30 15TDDD55 Lesson 1

Lexer Parser
String Tokens ???

Lab 2

2023-10-30 16TDDD55 Lesson 1

Lexer Parser
String ASTTokens

Regular expressions and Finite Automata (FA)

• What is accepted by FA can also be described by a regular expression!

• Important. The limitations of finite automata also applies to regular
expressions

– Finite automata can only count

❑Can not solve the problem of balanced parenthesis

❑Can not process context free-grammars

– Hence, you can not parse using regular expressions

2023-10-30 17TDDD55 Lesson 1

Dictionary. Some short terms explained

• Σ = Alphabet, sequence of symbols (Sigma)

• Q = The set of states in our FA

• 𝜹 = State transition function (Small Delta)

• F = Set of final states, or you can say accept states

• 𝑞0 = Initial state

• FA = Finite Automata

• NFA = None deterministic finite automata

• DFA = Deterministic finite automata

2019-11-07 18TDDD55 Lesson 1

Dictionary. Some short terms explained

• ε = Empty string (Small Epsilon)

– AεBεC ABC

• * = The Kleene star

• 𝐴𝐵 = Juxtaposition (Concatenation) between string A and B

• + and |

– In the tradition of the text (Formal languages): + means “or” (|)

– It might also mean concatenation/juxtaposition in some recent literature

• Please state what definition you use

2019-11-07 19TDDD55 Lesson 1

Thompsons Algorithm: A technique to generate NFA
from a Regular Expression

Converting Regular Expresisons to NFA: Thompsons algorithm

• Converts regular expressions into a corresponding NFA

• Not a mandatory part of the course. However, it might be useful to learn
this algorithm anyway

– Usually, intuitive approaches work as well

2019-11-07 21TDDD55 Lesson 1

Hints for Lab 1

Hints for Lab 1

• Instructions:

– https://www.ida.liu.se/~TDDD55/laboratories/instructions/lab1.html

• Clone the lab from

– https://gitlab.liu.se/tddd55/tddd55-lab

• In this course, it is extra important to consult the documentation and not
attempt to make progress by trial and error!

• Remember also to handle tabs (\t)

– New in 2023

❑ A test for Lab-1 that checks this

2023-10-30 23TDDD55 Lesson 1

✓ Additional information is available in the README
for each Lab

✓ See the Skeleton — TDDD55 Compilers and
Interpreters documentation for a complete
description of the entire lab project

https://gitlab.liu.se/tddd55/tddd55-lab
https://www.ida.liu.se/~TDDD55/laboratories/instructions/skeleton.html
https://www.ida.liu.se/~TDDD55/laboratories/instructions/skeleton.html

Hints for Lab 1

• Lab 1 consists of several files

– main.cc

– Makefile

– Makefile.dependencies

– scanner.h

– scanner.l

✓ scanner.l is the only file that you need to modify

– You will reuse your results later in Lab 3/4

2019-11-07 24TDDD55 Lesson 1

Hints for Lab 1

• To Compile:

– Type make in the directory where the files are

• Test the lab by executing:

– ./scanner ./test/<file-you-want-to-run>

• It is recommended that you start with the identifiers

2019-11-07 25TDDD55 Lesson 1

Hints for Lab 1

• Scanner specification via regular expressions

• Some definitions that usually mean the same thing

– Tokenizer, Lexical analyzer, Scanner

• Necessary to escape special tokens (Or rather token that has a meaning in Flex)

• Try the examples from the Flex manual

– https://www.ida.liu.se/~TDDB44/laboratories/instructions/_static/flex/index.html

• Remember also to handle tabs (!) ”\t”

2019-11-07 26TDDD55 Lesson 1

Hints for Lab 1

• An Integer with a dot

– INTDOT [0-9]+\.

• An Integer

– INTEGER [0-9]+

• An Integer without a period or an Integer with a period

– INTEGER_OR_INTDOT (INTEGER)|(INTDOT)

• Nested comments might be hard.

– Tip: Read up on Flex start conditions.

– See chapter 10 in the flex manual.

2023-10-30 27TDDD55 Lesson 1

Extended solution proposals for 2.1 (A) and 2.4

Extended solution proposal to Exercise 2.1 (A)

• We can write L1 as the following regular
expression:

– (0|1)*00

• From this we define our NFA

– From our starting state we can select
between two paths

• 0* or 1*

– For 00. We simply go forward two
steps

2023-11-30 29TDDD55 Lesson 1

Resulting NFA

2023-10-30 30TDDD55 Lesson 1

State 0 1

S1 {S1,S2} S1

S2 S3 S1

S3 S1 S2

Accepted state

Note not according to Thompson's algorithm. Furthermore, note that this is not a DFA, it is non-
deterministic since we can either go to S1 or to S2 in state S1

S1 S2 S3

0

1

0

0

0

1

Original regular expression
(0|1)*00

Extended solution proposal to Exercise 2.1 (A)

• Deriving a DFA

• 𝑄 , Σ , 𝛿 , 𝑞0 , 𝐹

– Alphabet: Σ = {0, 1}

– Transition function: 𝜹 See next slide

– States: Q = {S1,S2,S3} //Intuition: We have to handle atleast 3 tokens

– Accept states: F = {S3}

• 𝑆1 −> 𝑆2 −> 𝑆3 for the input 00

2019-11-07 31TDDD55 Lesson 1

State transition table for our transition function: 𝛿

2023-11-30 32TDDD55 Lesson 1

State Input 0 1

S1 S2 S1

S2 S3 S1

S3 S3 S1

▪ Alphabet: Σ = {0, 1}
▪ Transition function: 𝜹
▪ States: Q = {S1,S2,S3}
▪ Accept States: F = {S3}

S1

S2

S3

1

0

0

1

1

0

Resulting DFA:

Teaser for the next theme:
(Context Free Grammars/ Lab 2)

❖ Grammars

❖ Describing Regular Expressions using Grammar

2023-10-30 33TDDD55 Lesson 1

Regular Expressions to Grammar (Exercise 2.4)

• Given the following regular expressions

– 00 1|0 ∗ 1

– 101 101 ∗ 101 010 ∗

– (11|010)∗11 00|11 ∗

• Find Context Free Grammars(CFG) that correspond to the word that is
accepted by the regular expression

• If there are any insecurities regarding CFG and production rules,
see lecture 3

2023-10-30 34TDDD55 Lesson 1

Regular Expression 2.4 (A)

• 00 1 | 0 ∗ 1

• For this expression we shall first consider the types of strings we can accept

• We know that our alphabet is:

– Σ={0,1}

• Let’s derive a set of words that we would accept:

– {001, 0001, 00101, …}

• Note the Kleene star * and |

– Kleene star * allows the empty string

2019-11-07 35TDDD55 Lesson 1

Deriving a CFG for 2.4 A

• 00 1|0 ∗ 1

• Intuition

– From the expression above we notice that we always need 00 as a prefix

– Likewise, the suffix must be 1

• Rule 1

– S → 00𝐴1

– We do not yet bother with what A should be

2023-10-30 36TDDD55 Lesson 1

Deriving a CFG for 2.4 A

• 00 𝟏|𝟎 ∗ 1

– We know that 1|0 means a 1 or zero

– From this we know that (𝟏|𝟎)* gives the set:

• {ε ,0,1,00,01,10,11,001,…}

• 2𝑁 Different combinations where N is positive infinity

• Zero (ε) times gives us:

– 001 00ε1 So we can introduce the rule A → ε

2023-10-30 37TDDD55 Lesson 1

Deriving Rules for 2.4 (A)

• 𝑆 → 00𝐴1 & 𝐴 → ε

– Now we look at 00 𝟏|𝟎 ∗ 1 again

– 𝟏|𝟎 ∗ //{ε, 10, 110,11110,…}

• For the entire expression we would have 00101 for 10

– Notice that we need flexibility here. We can’t simply state that A is 10. The
reason is that A might be 110 or 1110

– If we say 𝐴 → 1𝐴 𝒐𝒓 𝐴 → 0𝐴 we get this flexibility

• Set of production rules for our CFG are: {𝑺 → 𝟎𝟎𝑨𝟏, 𝑨 → 𝛆, 𝑨 → 𝟏𝑨 , 𝑨 → 𝟎𝑨}

2023-10-30 38TDDD55 Lesson 1

www.liu.se

John Tinnerholm

Jonas Wallgren

References

Hopcroft, J. E. (2008). Introduction to automata theory, languages, and
computation. Pearson Education India.

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, techniques.
Addison wesley, 7(8), 9.

2019-11-07 40TDDD55 Lesson 1

	Slide 1: TDDD55-Lesson 1 Introduction to formal languages and automata theory and a brief introduction to Lab 1
	Slide 2: Agenda
	Slide 3: A Formal Language
	Slide 4: What is a Letter and an Alphabet?
	Slide 5: Words
	Slide 6: Automata?
	Slide 7: Examples of Automata
	Slide 8
	Slide 9: Digital Logic
	Slide 10: State Diagrams/Finite Automaton (FA)
	Slide 11: State Diagrams/Finite Automaton (FA)
	Slide 12: Practical Applications
	Slide 13: Applications
	Slide 14: Compiler Pipeline
	Slide 15: Lab 1
	Slide 16: Lab 2
	Slide 17: Regular expressions and Finite Automata (FA)
	Slide 18: Dictionary. Some short terms explained
	Slide 19: Dictionary. Some short terms explained
	Slide 20: Thompsons Algorithm: A technique to generate NFA from a Regular Expression
	Slide 21: Converting Regular Expresisons to NFA: Thompsons algorithm
	Slide 22: Hints for Lab 1
	Slide 23: Hints for Lab 1
	Slide 24: Hints for Lab 1
	Slide 25: Hints for Lab 1
	Slide 26: Hints for Lab 1
	Slide 27: Hints for Lab 1
	Slide 28: Extended solution proposals for 2.1 (A) and 2.4
	Slide 29: Extended solution proposal to Exercise 2.1 (A)
	Slide 30: Resulting NFA
	Slide 31: Extended solution proposal to Exercise 2.1 (A)
	Slide 32: State transition table for our transition function: delta
	Slide 33: Teaser for the next theme: (Context Free Grammars/ Lab 2)
	Slide 34: Regular Expressions to Grammar (Exercise 2.4)
	Slide 35: Regular Expression 2.4 (A)
	Slide 36: Deriving a CFG for 2.4 A
	Slide 37: Deriving a CFG for 2.4 A
	Slide 38: Deriving Rules for 2.4 (A)
	Slide 39
	Slide 40: References

