Programming Exercise 4: Intermediate Code
Generation

1 Introduction

The purpose of this exercise is to learn a little about how parse trees can be
translated into intermediary code. Although there are powerful tools that can
be used to generate code generators, it is still often done by hand.

2 Requirements

The file codegen. cc contains methods for generating code from most types of
abstract syntax tree nodes, but you need to write the methods for if statements
(including the elseif and else branches), for array references and assignments
to array elements and for all binary operators and relations by implementing
the function BinaryGenerateCode which is used for all binary operators and
relations. Write the missing methods and add calls to GenerateCode in the
parser specification.

When completed, you should have a program that is capable of generating
intermediate code for the small programming language used in exercises two,
three and four.

Hand in the following:

e A listing of codegen.cc with your changes clearly marked.
e Listings of any other files you modified.

e Answers to the questions in the next section.

3 Questions

Question 1 The code generator generates terribly inefficient code. For exam-
ple, assigning a constant to a variable causes two quads to be generated, where
one would have been enough. There are a number of other situations where
equally bad code is generated.

Suggest at least one way of eliminating most of the bad code that is gener-
ated.



Question 2 The final step in the compiler, generating machine code from the
intermediate code, has been omitted. In particular, issues pertaining to memory
management and function calls are not adressed at all in the intermediate code.
Sketch a rough design for the code generator. You may assume that all vari-
ables are stored in memory, and you may ignore the fact that the intermediate
code uses far more temporaries than are necessary. Explain how the code gen-
erator can lay out statically allocated memory and stack frames, based on the
information contained in the symbol tables and intermediate code.

4 Extra Credit Work: Interpreting Intermedi-
ate Code
Write an interpreter for the quads generated in this exercise. Your interpreter

will need to handle all the quads and all the predefined functions for input and
output (see the file main.cc.)

Hand in your program and any modified files with your changes
clearly marked.



