Programming Exercise 3: Parser Generators

1 Introduction

The purpose of a parser generator is to create a parser from a language speci-
fication. A language specification is much easier to create and maintain than a
hand-written parser, which is the main reason for using parser generators.

There are a wide variety of parser generators available. Most available tools
generate LALR parsers, but there are general LR(k) and LL(k) parser genera-
tors available as well. In this exercise you will use bison, an LALR(1) parser
generator.

2 Using bison

In order to use bison you will have to have the prog/gnu module loaded. At
a Unix prompt, type module list, and see if prog/gnu is listed. If it’s not
listed, type module add prog/gnu and module initadd prog/gnu to load the
module in the current shell and the next time you log in.

Full documentation for bison is available as an info document. To view the
documentation, start emacs, type C-h i, and select the entry entitled bison.
The Solaris AnswerBook contains documentation for yacc, which is very similar,
but not identical, to bison.

3 The Generated Parser

When you compile a parser specification with bison, a function named yyparse
is created. This function in turn calls yylex to retrieve tokens from the input,
and yyerror to report errors.

You can provide yylex by updating the rules in scanner.1 to match the ones
you wrote in the previous exercise. A version of yyerror is already supplied in
parser.y.

4 Requirements

You are to write the specifications for expressions, conditions and function def-
initions. Make sure that both children of an operator node have the same type.
You may need to insert IntegerToReal nodes in some cases, to convert integers
to floating-point numbers.

You also need to augment the grammar with error productions. After an
error occurs, parsing of statements should be resumed after the next semicolon.
You may insert other error productions if you want to.

Hand in the following:
o A listing of parser.y with your changes clearly marked.

e Listings of any other files you have modified, with your changes clearly
marked.

e Answers to the questions in the next section.

5 Questions

Question 1 Construct the canonical set of LR(0) items for the following gram-
mar. Can the grammar be used to construct an SLR parser? If not, explain
why and construct a new grammar that accepts the same language and can be
used to construct an SLR parser.

block : BEGIN decs ’;’ stmts END
decs : DEC

| DEC ’;’ decs
stmts : STMT

| STMT ’;’ stmts

Question 2 Show how an LR parser parses the string 1 + (2 - 3) using
the grammar below. Assume that NUMBER is the token returned for all numeric
constants. Demonstrate each step in the parsing process.

expr : expr '+’ term
| expr ’-’ term
| term
H
term : term ’*’ factor
| term ’/’ factor
| factor
H
factor NUMBER
|)() expr)))

Question 3 What is the difference between an LR(0) and an LR(1) parser.
Make up an example grammar and input to demonstrate the difference in op-
eration.

6 Extra Credit Work: LR Parser Generator

Write a program that can read a grammar from a file and construct parsing
tables for that grammar. Your program must construct tables sufficient for

parsing using SLR(1), LALR(1) or LR(1). It must be capable of printing the
sets of LR items, FIRST and FOLLOW sets, lookahead sets and any other
information needed in the parsing process.

Hand in your program code and some grammar examples.

