Programming Exercise 1: Attribute Grammars
and Top-Down Parsing

1 Introduction

Although not as flexible as bottom-up parsers, top-down parsers can easily
be implemented by hand, and as such they may be more convenient than a
bottom-up parsers. In this exercise you will specify a language of mathematical
expressions using an attribute grammar, and then write a top-down parser to
calculate the value of expressions in the language.

The language consists of numbers, symbolic constants, single-argument func-
tions, one unary and five binary operators. A grammar for the language is given
below, but this grammar is not suitable for implementation using a top-doown
technique since it is ambiguous and contains left recursion.

S -> E <end of line> S Single expression
| <end of file> No more input
E->E+E Addition
| E-E Subtraction
| E * E Multiplication
| E/E Division
| E-E Exponentiation
| -E Unary minus
| (E) Grouping
| id (E) Function call
[id Symbolic constant
| num Numeric value

2 Requirements

Rewrite the grammar in the previous section so that the precedence and as-
sociativity of all operators becomes obvious. Your grammar may contain left
recursion. The operator precedence is unary negation before exponentiation
before multiplication and division, before addition and subtraction. Addition,
subtraction, multiplication and division are left associateive. Exponentiation is
right-associative.

Eliminate left recursion from your grammar and revise it so it is suitable for
implementation in a predictive top-down parser. Add attributes to the grammar
that specify the semantics of the language.

Implement your attribute grammar in a C++ class named Parser. The
Parser class should contain a method named Parse that returns the value of

a single statement in the language. Your interpreter should understand the
following symbolic constants and functions:

pPi 3.14159265

e 2.71828183

1n() Natural logarithm
log() Base 10 logarithm
exp() Powers of e

sin() Sine

cos() Cosine

tan() Tangent

arcsin() Arc sine

arccos () Arc cosine
arctan() Arc tangent

All the functions are available in the standard math library. See the Unix
manual pages for details.

Implement error recovery in your parser. The simplest form of error recovery
is to scan tokens to the end of a line and then resume parsing. Feel free to
implement a smarter error recovery strategy.

Hand in the following:

e The grammars produced in each step. There should be one with left
recursion and one with attributes that is free of left recursion.

e Printouts of all the files you modified or created.
e Answers to the questions in the next section.

o Test data that show that the program works as specified. Be sure to test
error recovery, both from parser and scanner errors. Be sure to check that
error recovery does not interfere with the next input line. Check that
precedence and associativity rules are followed.

3 Questions

Question 1 Define a regular expression for numeric constants. It should
allow integers, numbers with a fractional part and numbers with an exponent.
A number containing a decimal point must have at least one digit before or after
the decimal point (or both). The exponent may have a sign, plus or minus, and
is always an integer.

Allowed Not Allowed
1234 A123

3.14 .

.112 112.a

112, 1E2.3

12.34 2.3e3.
34E-23 23E 54

34 .E+3

2.2eb

Question 2 Construct a DFA that accepts the same language as the regular
expression you defined in the previous question. Suggest how to implementa a
scanner based on your DFA.

4 Supporting Programs

The files 1abl.cc and labl.hh contain a skeleton for the parser class and a
class called Trace that can be used to trace invocation of functions. See the
Parser method for an example of how to use it. Objects of the class print an
entry message when created and an exit message when destroyed.

The files 1lex.cc and lex.hh contain a scanner class. To use it create an
object of type Scanner and call its Scan method to get a token. Tokens returned
are of type Token. See the comments in lex.hh for a description of how they
work.

The file main. cc contains a sample main program. You may have to modify
it depending on how you choose to report errors from your parser.

If the scanner encounters an error it will throw an object of type ScannerError.
Your main proogram should catch this exception (the sample main program
does), print an error message (you can print a ScannerError object using stream
operators) and then perform error recovery.

5 Extra Credit Work: User-Defined Variables

Implement user-defined variables according to the following grammar (E is as
before):

S -> Assign | E
Assign -> id ’:=’ E

After an assignment, a variable must be usable in the same way as a symbolic
constant in the basic exercise. The predefined constants should be implemented
in the same way as user-defined variables, but must not be changeable by the
user.

The scanner is already capable of recognizing an assigment operator, so there
should be no need to modify it.

To receive credit for this assignment you must implement a reasonably ef-
ficient symbol table. Lookup, insertion and deletion should be constant time
operations. Solutions with a simple linked list and linear search are not accept-
able.

Hand in your revised grammars, implementations and test sets.

6 Extra Credit Work: User-Defined Functions

Implement user-defined functions according to the examples below:

Expression: f(x) := sin(x) * sin(x)
Expression: f(1)
Result: 0.70807342

Expression: g(x,y) := sin(x) * cos(y)
Expression: g(1,2)
Result: -0.35017549

To do this you will have to revise the grammar to allow function definitions
and calls to functions with more than one argument. You will also need a symbol
table that fulfills the requirements of the previous extra credit exercise.

The predefined functions are to be implemented using the same mechanisms
as user-defined functions, but the user is not allowed to redefined them.

Hand in your revised grammars, implementations and test sets.

