The Skeleton

Contents

1 The Files

2 The Scanner

3 The Parser

4 Symbol Tables
4.1 Information About All Symbols
4.2 Information About Functions
4.3 Information About Variables
4.4 Information About Types
4.5 Casting from SymbolInformation#* to a Subclass
4.6 Adding Symbols oo
4.7 Finding Symbols

5 Abstract Syntax Trees
5.1 The Abstract Classes
5.2 The Concrete Classes. o i v i i i i v i i ..

6 Intermediate Code and Quads Lists
6.1 Quads and QuadsLists« . vt v i v i v v e
6.2 Methods for Code Generation
6.3 The Quads Revealed

7 Global Variables and Constants

11
12
13

21
21
23
25

29

This document describes the skeletons you will be using in exercises three and
four. The descriptions in here should be enough as long as everything goes as
planned, but if for some reason you need more information than you can find in
this description, you’ll just have to read the source code.

1 The Files

You'’ll find the following files in the 1ab3-4 directory:

Makefile:

if you add new source files.

This file is used by the make utility. You’ll only have to modify it

Makefile.dependencies: This file is generated by the make utility. There
is absolutely no point in modifying or removing this file since it will be
regenerated the next time you compile.

ast.cc: This file contains the C++ code that implements the functions that
print abstract syntax trees. The code is an absolute mess, but if you add
a new class to ast.hh, you should add code to print it here. You can
probably copy one of the other functions.

ast.hh: This file declares the classes used to implement the abstract syntax
trees. When you start writing code generation functions you’ll have to
know about many of the classes and their instance variables. There are
comments before the declarations that describe what the classes are for.

codegen.cc : This file implements the GenerateCode, GenerateCodeAndJump
and GenerateAssignment methods of the classes in ast.hh. It also im-
plements functions related to the classes in codegen.hh. This is the file
you’ll modify in exercise four, when you write code generation functions.

codegen.hh : This file declares the classes that are used for intermediate code.
You shouldn’t have to modify this file at all, but you may want to refer
to it to see which quads are legal.

main.cc: This file contains the main function, which starts the parsing pro-
cess. If you want to add a predefined function or command-line option,
this is the place to do it, but otherwise there should be no reason to modify
this file.

parser.y: This is the parser specification.
scanner.l: This is the scanner specification.

string.hh, string.cc: These files implement the string class, which is
used in a bunch of places. You encountered this class in the first exercise.

symtab.cc: This file implements all symbol table management functions. You
shouldn’t need to modify anything here, but one can never know. You will,
however, use most of the functions in this file.

symtab.hh : This file declares the classes used in the symbol tables, and the
symbol tables themselves. You’ll encounter the SymbolInformation class
and the classes derived from it a lot, so become friends with the code in
this file.

parser.cc: This is the generated parser. It might be fun to look inside to
see what it looks like. Keep in mind that this is the simple skeleton file.
There’s one that’s much nastier.

parser.cc.output : This file is generated when bison is run with the
--verbose option. It contains information about the generated parse
table, including all states in DPDA used for parsing. This file is really
useful when trying to identify conflicts in the grammar.

scanner.cc : This is the generated scanner. It might be fun to look inside to
see what it looks like.

parser.h: This file is also generated from parser.y when bison is run with
the --defines option. It contains C declarations of the union used to
return semantic values in the parser, and numeric values for all tokens
that the parser recognizes.

2 The Scanner

The scanner is generated using flex. You added some of the missing rules in
exercise two, so you should be reasonably familiar with it by now. There should
be no need to further modify the scanner in exercises three and four.

The scanner is only called from the generated parser.

3 The Parser

The parser is generated using bison. You’ll add to it in exercises three and
four.

When bison generates a parser from a grammar specification, it creates
parsing tables which are inserted into a skeleton file. There are two skeleton
files, bison.simple and bison.hairy included in the bison distribution. It is
also possible to write your own.

The parser is called from the function main, which is in the file main.cc.
This function initializes the symbol tables, processes the command-line options
and then calls the parser function yyparse.

4 Symbol Tables

The symbol table is one of the most important data structures in a compiler.
The symbol table defines the meaning of all symbols, defines which symbols
are visible from where, what type variables have, which functions have been
declared and so on.

The skeleton for this exercise has a global symbol table and one symbol table
for each function that is defined. The global table records every type defined
in any function and all functions and variables defined at the top level. Each
function also has a symbol table, in which the symbols defined immediately
within the scope of the function are recorded.

The symbol tables map strings to objects of subclasses
of SymbolInformation. There are currently three subclasses,
FunctionInformation, which stores information about functions,
VariableInformation, which stores information about variables and
TypeInformation, which stores information about types. Each of these
classes is described in detail below.

Everything related to symbol tables is defined in symtab.hh and symtab. cc.

4.1 Information About All Symbols

The SymbolInformation classis a superclass for all classes representing different
kinds of symbols. It defines a few methods and instance variables that are used

by all subclasses. Most of the definition of SymbolInformation is shown in
figure 1.

Figure 1 Definition of SymbolInformation.
class SymbolInformation

{
protected:
/7 L...]
public:
SymbolInformationType tag;
string id;
SymbolTable *table;
SymbolInformation(SymbolInformationType t, const string &i) :
tag(t),
id(i) {3};
virtual FunctionInformation *SymbolAsFunction(void) { return NULL; };
virtual VariableInformation *SymbolAsVariable(void) { return NULL; };
virtual TypeInformation *SymbolAsType(void) { return NULL; };
/7 L...]
};

The following fields are of interest:

id : This is the name of the symbol, under which it is registered in the symbol
table.

table : This is a pointer to the symbol table in which the symbol is recorded.

The following methods may also be of use. They are all described in more
detail below, in the section about casting from SymbolInformation* to pointers
to subclasses.

SymbolAsFunction: This method is used for casting values of type
SymbolInformation* to FunctionInformationx.

SymbolAsVariable: This method is used for casting values of type
SymbolInformation* to VariableInformationk.

SymbolAsType : This method is wused for casting values of type
SymbolInformation* to TypeInformationx.

4.2 Information About Functions

Information about functions 1is stored in objects of the class
FunctionInformation. Most of the definition of FunctionInformation
is shown in figure 2.

The private instance variables have the following uses:

parent : A pointer to the FunctionInformation object for the function in
which this function was defined. For example, if function g is defined
within the scope of function f, The parent variable in g will point to £.

returnType : A pointer to the TypeInformation object representing the re-
turn type of the function.

Figure 2 Definition of FunctionInformation.

class FunctionInformation : public SymbolInformation

{

protected:

/7 [...]

long temporaryCount;

private:

FunctionInformation
TypeInformation
VariableInformation
VariableInformation
SymbolTable

StatementList
QuadsList

public:

};

*parent;
*returnType;
*lastParam;
*lastLocal;
symbolTable;

*body;
*quads;

FunctionInformation(const string& i)
SymbolInformation(kFunctionInformation, i),

parent (NULL),

returnType (NULL),

lastParam(NULL),
lastLocal (NULL),

body(NULL),
quads (NULL) {};

virtual FunctionInformation *SymbolAsFunction(void) { return this; };

void SetParent(FunctionInformation x*);
void SetReturnType(TypeInformation *);
void SetBody(StatementList *);

FunctionInformation
TypeInformation
VariableInformation
StatementList

FunctionInformation
VariableInformation
VariableInformation
SymbolInformation
TypeInformation

VariableInformation

*GetParent (void);
*GetReturnType(void) ;
*GetLastParam(void) ;
*GetBody(void);

*AddFunction(const string&, FunctionInformation *);
*AddParameter(const string%, TypeInformation *);
*AddVariable(const string&, TypeInformation *);
*AddSymbol (SymbolInformation *);

*AddArrayType (TypeInformation *, int);

*TemporaryVariable(TypeInformation *type);

void GenerateCode(void);
char OkToAddSymbol(const string&);
SymbolInformation *LookupIdentifier(const stringk);

lastParam: A pointer to the VariableInformation for the last formal pa-
rameter defined.

lastLocal : A pointer to the VariableInformation object representing the
last local variable defined in the function.

symbolTable : The function’s symbol table. This is where all local variables,
formal parameters, local functions and temporary variables are stored.

body : A pointer to the abstract syntax tree representing the function’s body,
or NULL if the body has not been defined or there were compilation errors.

quads : A pointer to the intermediate code representation of the function body,
or NULL if it has not yet been generated or there was no function body.

The following methods are defined in FunctionInformation:

SymbolAsFunction: This method is wused to cast values of type
SymbolInformation* to FunctionInformation*. It is described in
more detail below.

SetParent : Sets the parent instance variable.
SetReturnType : Sets the returnType instance variable.
SetBody : Sets the body instance variable.

SetQuads : Sets the quads instance variable.

GetParent : Returns the parent instance variable.
GetReturnType: Returns the returnType instance variable.
GetLastParam: Returns the lastParam instance variable.
GetBody : Returns the body instance variable

GetQuads : Returns the quads instance variable.

AddFunction: Adds a function to the function’s symbol table. The first ar-
gument to AddFunction is the name of the function to add. The second
argument is a pointer to a FunctionInformation object representing the
function.

AddVariable : Adds a variable to the function’s symbol table. The first ar-
gument to AddVariable is the name of the variable to add. The second
argument is a pointer to a VariableInformation object representing the
variable.

AddSymbol : Adds a symbol to the function’s symbol table. You should never
have to call this directly. Use one of the AddSomething functions instead.

AddArrayType: Adds an array type to the global symbol table. The first
argument is the element type of the array, and the second is the number
of elements in the array. This function will construct a symbol for the array
type. For example, an array of ten integers will be named integer<10>.

TemporaryVariable : Returns a freshly allocated VariableInformation ob-
ject with the type set according to the TypeInformation given as an ar-
gument to TemporaryVariable. The new variable is guaranteed to have
a name that is unique within the symbol table of the function.

GenerateCode : Generates code for the function body and places a pointer to
the code in the quads field of the FunctionInformation record.

OkToAddSymbol : Returns nonzero if the argument given to 0kToAddSymbol is
not already occupied by a symbol in the function’s symbol table or a type
in the global symbol table.

LookupIdentifier : Looks up a symbol in the function’s scope (its own
symbol table and those of it’s parents and ancestors) and returns the
SymbolInformation record representing that symbol. You may have to
case the result to one of the SymbolInformation subclasses. There’s a
section below that describes how to do that.

4.2.1 Formal Parameters

The formal parameters of a function are kept in a list in the symbol table. The
lastParameter variable in a FunctionInformation object points to the last
formal parameter of a function. The list of parameters is kept together by the
prev field of the VariableInformation objects representing the parameters.

Note that this list is stored in reverse order. The last formal parameter is
the first element of the list, and the first formal parameter is the last element of
the list. This may seem a bit counter-intuitive, but it is practical when building
such lists using left-recursive grammars.

To add a formal parameter to this list, call the AddParameter method, which
adds a parameter to the beginning of the formal parameters list.

4.2.2 Local Variables

The local variables, excluding all temporary variables and formal parameters,
are also kept in a list, in a manner similar to the formal paramters. The
lastLocal instance variable points to the last local variable declared in the
function.

Variables that are generated using the TemporaryVariable function are not
included in this list.

To add a local variable to a function’s symbol table, call the AddVariable
method, which adds the variable to the front of the local variables list.

4.3 Information About Variables

Variables are represented by objects of the VariableInformation class. Most
of the definition of VariableInformation is shown in figure 3.
The fields of VariableInformation have the following uses:

type : A pointer to the TypeInformation record representing the variable’s
type. This field must be set at all times, or horrible things may happen.

Figure 3 Definition of VariableInformation.
class VariableInformation : public SymbolInformation
{
protected:
/7 [...]
public:
TypeInformation *type;
VariableInformation *prev;

virtual VariableInformation *SymbolAsVariable(void) { return this; };

VariableInformation(const string& i) :
SymbolInformation(kVariableInformation, i) {};
VariableInformation(const string& i, TypeInformation *t) :
SymbolInformation(kVariableInformation, i),
type(t) {};

};

prev : A pointer to the previous variable in some list. There are currently two
kinds of list: the list of formal parameters in a function and the list of
local variables of a function. prev is NULL in the last element of the list.

The VariableInformation class defines the following methods:

SymbolAsVariable: This method is used for casting values of type
SymbolInformation* to VariableInformation. There is a section be-
low that describes how this works.

4.4 Information About Types

Types are represented by objects of the TypeInformation class. These are all
stored in the global symbol table. When the parser is called the global symbol
table contains two types, integer and real. More types are added when the
program declares arrays; each kind of array is given its own type. For example,
all variables that are arrays of 10 integers will have the type integer<10>., and
all variables that are arrays of 5 reals will have the type real<5>.

The global variable kIntegerType points to the TypeInformation ob-
ject for the integer type and the global variable kRealType points to the
TypeInformation object for the real type.

If you need to check if two variables have the same type, simply retrieve
pointers to the TypeInformation records for the types and compare the point-
ers. Most of the definition of TypeInformation is shown in figure 4.

The following fields are used:

elementType: For array types, this contains a pointer to the
TypeInformation record representing the type of elements. For
non-array types, this is NULL.

arrayDimensions : For array types, this is the number of elements in the
array. For non-array types, this instance variable is undefined.

size : This is the number of bytes required to store the type in memory. It is
used for calculating the address of an element in an array.

Figure 4 Definition of TypeInformation.
class TypeInformation : public SymbolInformation

{
protected:
/7 L[...]
public:
TypeInformation *elementType;
int arrayDimensions;
unsigned long size;
virtual TypeInformation *SymbolAsType(void) { return this; };
TypeInformation(const string& i, unsigned long s) :
SymbolInformation(kTypeInformation, i),
size(s) {};
};

4.5 Casting from SymbolInformation* to a Subclass

Sometimes it is necessary to cast a value that has the type “pointer to
SymbolInformation” to a pointer to one of the subclasses. For example, the
LookupSymbol method returns a pointer to a SymbolInformation, but in order
to use it, it may be necessary to cast it to a pointer to VariableInformation,
FunctionInformation or TypeInformation.

This kind of cast is called a downcast in C++, and isn’t something to be
done lightly. Consider the scenario in figure 5.

Figure 5 Downcasting; first version.

class A { void f(A *ptr) {
public: C *x = (C *)ptr;
int x;
}; cout << x->y << ’\n’;
}
class B : public A {
public: void g(void) {
int y; B var;
BO : y(1) {};
}; f(&var);
}
class C : public A {
public:
char *y;

CQO : y("FO0") {};

};

When the programmer calls g, g will create an object of type B. The call
to f is perfectly legal, since A is a superclass of B. In f, the program converts
the parameter to a pointer to C, and since this is C++, that works too, even
though the object pointed to is actually not of type C, but of type B. The next
statement, which tries to print the y field, will cause the program to crash.

This is why downcasting is tricky business. You can shoot yourself in your
foot by downcasting to the wrong type, and the compiler probably won’t even
warn you that the gun is loaded.

In recent drafts of the C++ standard, there is a mechanism for safe down-
casting, which is based on something called RTTI, which stands for Run-Time

Type Information. Since many compilers don’t support this, we’ll have to try a
different trick.

One trick is to include a type tag in the superclass, an instance variable that
indicates which type the object really has. Then we can check this variable
before downcasting. It looks something like the code in figure 6.

Figure 6 Downcasting; second version.

class A { void f(A *ptr) {
public: C *x;
int tag;
A(int t) : tag(t) {}; if (ptr->tag == 1) {
}; x = (C *)ptr;
cout << x->y << ’\n’;
class B : public A { }
public: else
int y; {
BO : A(0), y(1) {}; // Do something else
}; }
}
class C : public A {
public: void g(void) {
char *y; B var;
CO : A(D), y("FOO") {};
}; f(&var);
}

This solution works fine as long as we don’t forget to set the tag, set it to
the right value every single time and never forget to check it. Unfortunately, if
we have a good compiler, the compiler will warn us about the downcast, even
though we know it’s safe.

Another solution, which is the one used in the skeleton program, is to do
casting using virtual methods. The superclass defines one casting method for
each subclass, and the subclasses redefined the casting method that applies to
that subclass. The methods are designed to return NULL when we attempt an
illegal downcast. The solution might look something like figure 7.

This solution is more elegant in many ways. It does not require us to set a
special tag value; the compiler will keep track of the types through the virtual
method mechanism. There are no explicit downcasts. Thw downside is that we
have to define a lot of virtual methods in the base class.

In the skeleton for the exercise you can convert a SymbolInformation
pointer into a FunctionInformation pointer using the SymbolAsFunction
method; into a VariableInformation pointer using the SymbolAsVariable
method; and into a TypeInformation pointer using the SymbolAsType method.

4.6 Adding Symbols

Symbols are added to symbol tables by calling the AddParameter,
AddVariable, TemporaryVariable, AddFunction or AddArrayType methods
of the FunctionInformation object to whose symbol table the symbol is to
be added. In other words, you’ll never have to call methods directly on the
SymbolTable class.

Before adding a symbol it is a good idea to check if you are allowed to add
it at all, by calling the 0kToAddSymbol. This needs to be done on functions and
variables, not on array types.

10

Figure 7 Downcasting; final version.

class Bj; class C : public A {
class C; public:
char *y;
class A { c() : y("Foo") {};
public: virtual C* Cast_A_to_C(void)
virtual B* Cast_A_to_B(void) { return this; }
{ return NULL; }; };
virtual C* Cast_A_to_C(void)
{ return NULL; }; void f(A *ptr) {
}; C *x = ptr->Cast_A_to_C();
class B : public A { if (x != NULL)
public: cout << x->y << ’\n’;
int y; else
B(O) : y(1) {3}; ; // Do something else
virtual B* Cast_A_to_B(void) ¥
{ return this; };
}; void g(void) {
B var;
f(&var);
}

The functions that add symbols return VariableInformation,
FunctionInformation and TypeInformation records. In most cases you
can ignore the return value, since it will be identical to one of the ar-
guments you supplied to the function. The exceptions are the functions
AddArrayType and TemporaryVariable, which allocate TypeInformation or
VariableInformation objects of their own.

4.7 Finding Symbols

When you want to look up a symbol, use the LookupIdentifier method of the
FunctionInformation whose symbol table you want to examine. This function
searches all the parents of the function, right up to the global symbol table,
and returns the first SymbolInformation object it finds that has the requested
name, or NULL if no symbol was found.

You’ll probably have to cast the result from LookupSymbol to one of the sub-
classes of SymbolInformation. See the section above on casting for information
on how to do this.

5 Abstract Syntax Trees

The other really important data structure in the compiler is the abstract symtax
tree. As the parser reads its input it constructs an abstract syntax tree, or AST
for short, that represents the program. The tree is simple for a second phase to
translate to intermediate code.

In an AST there will be nodes of many different kinds, representing differnt
kinds of program constructs. Each type of node carries slightly different infor-
mation and may have any number of children. In the program skeleton each
kind of node has a class of its own, and all classes are derived (sometimes in
several steps) from the abstract class ASTNode.

11

Besides the classes that represent actual node types, there are several ab-
stract classes that represent classes of similar node types. For example, the
Expression class is a base class for all classes that represent node types that
are part of expressions, and the LeftValue class is a base class for all types of
nodes that can sit on the left-hand side in an assignment.

5.1 The Abstract Classes

This section describes the abstract classes that are included in the hierar-
chy derived from ASTNode. The classes in question are ASTNode, Statement,
Expression, BinaryOperation, LeftValue, Condition, BinaryRelation and
BinaryCondition.

5.1.1 ASTNode

Base class for all AST node types. Defines the methods and variables needed
to print syntax trees, and defines abstract virtual methods implemented by
subclasses.

5.1.2 Statement

Base class for all types of statements. Its only use is in declarations where all
kinds of statements are valid, such as the statement field of the StatementList
class.

5.1.3 Expression

Base class for all kinds of expressions. All expressions have a type, which is
stored in the valueType field of the Expression class. The value type is set
automatically by the constructors for the derived classes. When manipulating
expressions in the parser you will sometimes have to look at the valueType field
of the objects involved.

The Expression class is also used extensively in declarations of other classes.

5.1.4 BinaryOperation

Base class for all binary operations within expressions. This class defines two
instance variables, 1eft and right, which represent the left-hand side and the
right-hand side of the expression, respectively.

5.1.5 LeftValue

Base class for anything that can appear on the left-hand side of an assignment.

LeftValues are also expressions, so this class is derived from Expression.
LeftValue declares a new method, GenerateAssignment, which in the sub-

classes is used to generate code for assigning into whatever the class represents.

5.1.6 Condition

Base class for all kinds of conditions. This class is used only in declaring other
classes.

12

5.1.7 BinaryRelation

Base class for all binary relations, such as greater than, less than and equals.
BinaryRelation defines two variables, left and right, which represent the
left-hand side and right-hand side of the relation, respectively.

5.1.8 BinaryCondition

Base class for all binary conditions. Currently the only ones are and and or.
BinaryCondition defines two instance variables, left and right, which repre-
sent the left-hand side and right-hand side of the condition, respectively.

5.2 The Concrete Classes

These are the classes that you might have reason to create. If you need more
detail than is provided here, read the source code in ast.hh and ast.cc.

All classes have constructors that initialize the instance variables of the ob-
ject. Unless otherwise mentioned, the constructor takes the same arguments, in
the same order, as there are fields listed for each class. For example, if there
are two fields, a Statement and an Expression listed, then the constructor
will take a Statement pointer and a Expression pointer as arguments, and use
those to initialize the fields of the object.

5.2.1 StatementList

Represents a statement within a list of statements. This class derives from
ASTNode and defines the following fields:

statement : The statement itself (a pointer to a Statement.)

precedingStatements: The preceding statement in the list (a pointer to a
StatementList.)

A statement list, like most other lists in the AST and the symbol ta-
ble, is stored backwards. For example, a three-statement program will be
stored as three StatementList objects, each one pointing to a statement
through the statement field and the list of preceding statements through the
precedingStatements field. Figure 8 shows a simple example of how a state-
ment list is represented.

5.2.2 IfStatement

This class represents if statements in the program. It derives from Statement.
An IfStatement the following fields:

condition: The condition of the if statement (a Condition.)

thenStatements: The statements in the then part of the if statement (a
pointer to a StatementList.)

elseIfList : The list of elseif statements, in reverse order (a pointer to an
ElseIfList.)

13

Figure 8 Example of a statement list.
The following small program.. .

begin
X =y + 2;
z =z *x z + f;
q =X - z;
end;

...is translated to the following sequence of StatementLists:

StatementList
statem‘en/ \YjedingStatements
q:=T—=z StatementList
statemy wedingStatements
zi=zxz+f StatementList
statemy erdingStatements
T:i=y+2 NULL

elseStatements: The statements in the else part of the if statement (a
pointer to a StatementList.)

See 9 for an example of how an if statement is represented.

5.2.3 ElselIfList

This class represents an elseif branch of an if statement. It derives directly
from ASTNode. The class ElseIfList has the following fields:

preceding : A pointer to the ElseIfList object that represents the previous
elseif branch of the if statement (a pointer to an ElseIfList.)

condition: The condition in the elseif branch (a pointer to a Condition.)

body : The statements to execute if the condition is true (a pointer to a
StatementList.)

Note that like statement lists, the list of elseif branches is in reverse order.
Figure 9 shows an example of an if statement with two elseif branches.

5.2.4 Assignment

This class represents an assignment statement. It derives from the Statement
class. An Assignment has the following fields

target : The object being assigned into (a pointer to a LeftValue.)

14

Figure 9 Example of an if statement with elseif branches.

The following small program...

begin
if x == y then begin

end
elseif x < y then begin

end
elseif x > y then begin

end
else

end if;
end;

...is translated to the following structure, rooted in an IfStatement (note the
reverse order of the elseif branches):

IfStatement
conditio lseStatements
thenStatements
==Y T elseIfList
ElseIflList
condition preceding
body
z>y -+ ElseIfList
condition preceding
body
<Yy NULL

15

value : The Expression to assign to the target (a pointer to an Expression.)

Figure 10 shows an example of what this structure can look like.

Figure 10 Example of an assignment statement.
The statement x := x + 1 is translated to the following structure:

Assignment

taly \a\l:le

Identifier Plus

‘ 1ef/ \ﬁht
id

z Identifier IntegerConstant

id value

5.2.5 CallStatement

This class represents a function call. It derives from Statement. A
CallStatement has the following field:

call: A pointer to the FunctionCall object that represents the actual func-
tion call.

The reason there is a CallStatement class at all is that the FunctionCall
derives from Expression, and expressions can’t appear as statements. We could
have let FunctionCall inherit from both Statement and Expression, but mul-
tiple inheritance is a nuisance, so we preferred this solution.

5.2.6 ReturnStatement

This class represents a return statement. It derives from Statement. A
ReturnStatement object has the following fields:

value : A pointer to the Expressionobject that represents the value to return.

5.2.7 WhileStatement

This class represents a while statement. It derives from Statement. A
WhileStatement object has the following fields:

condition: The condition for executing the loop (a pointer to a Condition.)

body : The look body (a pointer to a StatementList.)

16

5.2.8 ExpressionList

This class represents an expression within a list of expressions. It is currently
only used for parameters in a function call, but it could also be used for things
like array constants. It derives directly from ASTNode and has the following
fields:

precedingExpressions : This is a pointer to the ExpressionList object rep-
resenting the preceding expression in the list.

expression: This is the expression itself (a pointer to an Expression.)

Note that expression lists, just like most other lists, are stored in reverse
order. Again, this is because it makes the semantic actions in the parser simpler
and faster.

There’s an example of an ExpressionList in figure 11.

5.2.9 FunctionCall

This class represents a function call. It derives from Expression. Function
calls as individual statements are represented by the CallStatement class. A
FunctionCall object has the following fields:

function: The function to call (a pointer to a FunctionInformationobject.)

arguments : The arguments to pass to the function (a pointer to an
ExpressionlList.

Figure 11 shows what a function call might look like.

5.2.10 IntegerConstant

This class represents an integer constant. It derives from the Expression class.
An IntegerConstant has the following fields:

value : The integer value (a signed long integer.)

5.2.11 RealConstant

This class represents a real constant. It derives from the Expression class. A
RealConstant has the following fields:

value : The value of the constant (a double.)

5.2.12 IntegerToReal

This class represents the implicit conversion of an integer to a real. It is used
in expressions to ensure that the types of the left-hand side and the right-hand
side are the same, and in function calls to convert integer values to reals before
passing then as real arguments. IntegerToReal is derived from Expression.
The IntegerToReal class has the following fields:

value : The integer-valued expression whose result needs to be converted to a
real (a pointer to an Expression.)

17

Figure 11 Example of a function call.
The function call ack(x + 1, y) is translated to the following structure:

FunctionCall
functy \Krg\uments
ExpressionList
express‘V \\I‘e&cedingExPressions
Identifier ExpressionList
express}V \Y:edingExpressions
id
Plus NULL

Identifier IntegerConstant

id value

T 1

5.2.13 TruncateReal

This class represents the implicit conversion of a real to an integer. It is used
in function calls and assignments when a real value needs to be assigned to an
integer variable or parameter. TruncateReal is derived from Expression. A
TruncateReal object has the following fields:

value : The real-valued expression whose result needs to be converted to an
integer (a pointer to an Expression.)

5.2.14 Plus

This class represents the addition of two expressions. It derives from
BinaryOperator and does not add any new fields.

5.2.15 Minus

This class represents subtraction of two expressions. It derives from
BinaryOperator and does not add any new fields.

5.2.16 Times

This class represents the multiplication of two expressions. It derives from
BinaryOperator and does not add any new fields.

18

5.2.17 Divide

This class represents the division of two expressions. It derives from
BinaryOperator and does not add any new fields.

5.2.18 Power

This class represents raising one expression to the power of another. It derives
from BinaryOperator and does not add any new fields.

5.2.19 UnaryMinus

Thie class represents unary negation of an expression. It has the following field:

right : A pointer to the expression that is being negated (a pointer to an
Expression.)
5.2.20 ArrayReference

This class represents a reference to an array element, such at a[x]. It derives
from the abstract class LeftValue, and can be used both in assignments and in
expressions. An ArrayReference object has the following fields:

id: The variable containing the array being subscripted (a pointer to a
VariableInformation.)

index : The index expression (a pointer to an Expression.)

Figure 12 shows an example of this class.

Figure 12 An example of an ArrayReference structure.

The expression a := b[x + 1] is translated to the following tree:
Assignment
Identifier ArrayReference
/ wx
a
a b Plus
left right
Identifier IntegerConstant
id value
z 1

19

5.2.21 Identifier

This class represents a variable (other types of symbols, such as functions
and types, are stored directly in the nodes that use them.) It derives from
the LeftValue class, so it can appear in assignments and in expressions. An
Identifier object has the following field:

id: A pointer to the VariableInformation object for the variable.

5.2.22 LessThan

This class represents the less-than (<) operator. It derives from the
BinaryRelation class, and does not define any new fields or methods.

5.2.23 GreaterThan

This class represents the greater-than (>) operator. It derives from the
BinaryRelation class, and does not define any new fields or methods.

5.2.24 GreaterThanOrEqual

This class represents the greater-than or equal (>=) operator. It derives from
the BinaryRelation class, and does not define any new fields or methods.
5.2.25 LessThanOrEqual

This class represents the less-than or equal (<=) operator. It derives from the
BinaryRelation class, and does not define any new fields or methods.

5.2.26 Equal

This class represents the equals (==) operator. It derives from the
BinaryRelation class, and does not define any new fields or methods.

5.2.27 NotEqual

This class represents the not equal (<>) operator. It derives from the
BinaryRelation class, and does not define any new fields or methods.

5.2.28 BooleanConstant

This class represents a boolean constant, true or false. It derives from the
Condition class, and as such can be used in conditions. It defined the following
field:

value : The value of the constant (a bool.)

5.2.29 And

This class represents the logical and operator. It derives from the abstract class
BinaryCondition, and does not define any new fields or methods.

20

5.2.30 Or

This class represents the logical or operator. It derives from the abstract class
BinaryCondition, and does not define any new fields or methods.

5.2.31 Not

This class represents logical negation. It derives from Condition, and defines
the following field:

right : The condition to negate (a pointer to a Condition.)

6 Intermediate Code and Quads Lists

Intermediate code is represented by lists of gquads. Each quad is like a high-
level machine instruction. In the general case a quad has three arguments,
two operands and one results. Operands and results are usually references to
variables in a symbol table, but occasionally an operand will be a constant
number.

The quads are generated using the GenerateCode, GenerateCodeAndJump
and GenerateAssignment methods of the subclasses of ASTNode. The resulting
code is stored in the quads field of the FunctionInformation object for which
the code was generated.

6.1 Quads and QuadsLists

There are two classes you’ll encounter when dealing with intermediate code,
Quad and QuadsList. There are other classes as well, but you probably won’t
be using any of them. Finally, there is a type named tQuadType which defines
all the names of the quads.

6.1.1 Quad

The definition of Quad is shown in figure 13.

The most important field in a Quad is opcode, which defined what kind of
quad the object represents. The remaining fields are the arguments to the quad.
Each quad can have three arguments, and each argument can be a reference to
a symbol, an integer or a double. You’ll probably never have to look directly at
the fields in a quad.

There are enough constructors to handle all kinds of operand combinations.
When you need to create a quad with fewer than three operands, such as a
label quad, just pass NULL for the unused arguments.

6.1.2 QuadsList

The definition of the QuadsList is shown in figure 14.

QuadsList contains a nested class named QuadsListElement, which is used
to link individual quads into a list. You will never have to use this class directly
(I hope.)

As you may notice there is no way to get an individual quad or modify
the list. This would be a serious omission in a real compiler, but for this

21

Figure 13 Definition of Quad.

class Quad

{

private:
/7 [...]

public:
tQuadType opcode;
SymbolInformation *syml;
SymbolInformation *sym2;
SymbolInformation *sym3;
long intl;
long int2;
long int3;
double reall;
double real2;
double real3;

Quad (tQuadType o,
SymbolInformation *a, SymbolInformation *b, SymbolInformation *c)
opcode(o),
symli(a),
sym2(b),
sym3(c)
i}

Quad(tQuadType o, long a, SymbolInformation* b, SymbolInformation* c)
opcode (o),
sym2(b),
sym3(c),
inti(a)
i}

Quad (tQuadType o, SymbolInformation *a, long b, SymbolInformation *c)
opcode(o),
symi(a),
sym3(c),
int2(b)
i+

Quad (tQuadType o,
double a, SymbolInformation *b, SymbolInformation *c)
opcode (o),
sym2(b) ,
sym3(c),
reall(a)
{};
// [...]

22

Figure 14 Definition of QuadsList.

class QuadsList

{

class QuadsListElement

{

public:
Quad *data;
QuadsListElement *next;

QuadsListElement (Quad *d, QuadsListElement *n) :
data(d),
next(n) {};
"QuadsListElement() { delete data; next = NULL; }
}s

QuadsListElement *head, *tailj;
static long labelCounter;

public:
QuadsList() : head(NULL), tail(NULL) {};

QuadsList& operator+=(Quad *q);
long NextLabel(void) { return (labelCounter += 1); };
};

skeleton we’ve tried to keep the amount of code to a minimum. There is a class
named QuadsListIterator that can be used to iterate over all elements in a
QuadsList.

There are two methods of interest defined in QuadsList. The first one if
NextLabel, which simply returns a number that can be used as a label in a
label quad. The method guarantees that the label will be unique across all
QuadsLists.

The other method is the operator +=. This operator is ued to append a quad
to the end of a quads list. The example in figure 15 shows how to generate code
for the expression 1 + 3. Note the three statements reading quads += ...;.
These add quads to the QuadsList argument to the function.

6.2 Methods for Code Generation

Code generation is implemented by three virtual methods defined on subclasses
of ASTNode. The first, GenerateCode just generates code for an object. The
second, GenerateCodeAndJump generates code the same way as GenerateCode,
but ensures that constrol is transferred to a specific label and does not continue
with the next quad in the quads list. The third method, GenerateAssignment
is used to generate code for assignments, and is only defined on subclasses of
LeftValue.

6.2.1 GenerateCode

This is the basic code generation method. It has one argument, the QuadsList
to which new quads are to be appended and it returns one result, a pointer to
a VariableInformation in which the last result computed value is placed (this
only applies to code generation for subclasses of Expression and Condition.)

23

Figure 15 Example of appending quads to a QuadsList.

VariableInformation *0OnePlusThree(QuadsList& quads)
{

VariableInformation *t1l, *t2, *res;
// Get some temporary variables to work with
t1 = currentFunction->TemporaryVariable(kInteger);

t2 = currentFunction->TemporaryVariable(kInteger);
t3 = currentFunction->TemporaryVariable(kInteger);

// Add the quads to the quads list
quads += new Quad(icomst, 1, NULL, t1);
quads += new Quad(iconst, 3, NULL, t2);
quads += new Quad(iadd, t1, t2, res);

return res;

Figure 16 shows what GenerateCode might look like for the Plus node. In
reality it also checks the types of its operands in order to catch errors made in
the parser.

Figure 16 Code generation procedure for Plus.

VariableInformation: :Plus(QuadsList& q)
{

VariableInformation *leftInformation, *rightInformation;
VariableInformation *result;

leftInformation = left->GenerateCode(q);
rightInformation = right->GenerateCode(q);

result = currentFunction->TemporaryVariable(left->type);
if (result->type == kIntegerType)

q += new Quad(iadd, leftInformation,
rightInformation,
result);

else if (result->type == kRealType)

q += new Quad(radd, leftInformation,
rightInformation,
result);

else
// An error in the parser. Tell the user.

return result;

This example is fairly typical. The GenerateCode function first generates
code for all its children, then computes a result by combining the results returned
from the children, and then returns the VariableInformation object for the
variable where it stored that result. Note how this example checks the type of
the operands and generates different quads depending on the types.

24

6.2.2 GenerateCodeAndJump

GenerateCodeAndJump is similar to GenerateCode, but it guarantees that the
generated code will jump to a specified label and not just continue with the next
quad in the quads list. This method is used when an object is generating code
for its children and wants to make sure that the code the children generate exit
to a loop the object specifies. An example of this is the if statement, which
calls GenerateCodeAndJump for the elseif branches.

In addition to the QuadsList argument, GenerateCodeAndJump takes a
second argument, 1bl, which is the label number to jump to. It returns a
VariableInformation pointer, just like GenerateCode.

6.2.3 GenerateAssignment

This method is implemented by subclasses of LeftValue and is used to generate
the code for an assignment. For assignments, the standard template of “generate
code for all children, then add some quads” isn’t practical. After all the code
required to change an array element is very different from the code required to
read it.

Therefore, the GenerateCode method for Assignment first generates for
for the right-hand side of the assignment, then calls the GenerateAssignment
method of the object on the left-hand side.

A GenerateAssignment method takes two arguments. The first is the
QuadsList object to which it should add instructions. The second is a pointer
to a VariableInformation which contains the result of the expression on the
right-hand side of the assignment.

The GenerateAssignment does not have a return value.

6.3 The Quads Revealed

This section lists all the quads in some semi-logical order. Each entry starts
with the name of the quad and its operands. There are three types of operands,
symbols, integers and reals. In the operand listing a symbol operand is listed as
symz, an integer operand is listed as intz and a real operand is listed as realz.
An operand titled 1bl is a label number (integer constant.) The last operand
is always the result, unless otherwise stated.

iconst int1 - syml

Loads the integer constant int1 into the variable represented by symi, which
must have type kIntegerType.

rconst reall - symil

Loads the real constant reall into the variable represented by sym1, which must
have type kRealType.

iaddr syml - sym2

Loads the address to the array represented by sym1 into the variable represented
by sym2, which must have type kIntegertype.

25

itor syml - sym2

Converts the integer in the variable syml1 to a real, and stores the result into
sym2. syml must have type kIntegerType and sym2 must have type kRealType.

rtrunc syml - sym2

Truncates the real in variable sym1 and stores the result into sym2. sym1 must
have type kRealType and sym2 must have type kIntegertype.

iadd syml sym2 sym3

Add the integers in variables sym1 and sym2 and store the result into sym3. All
variables must have type kIntegerType.

isub syml sym2 sym3

Subtract the integer in sym2 from the one in sym1 and store the result into sym3.
All variables must have type kIntegerType.

imul syml sym2 sym3

Multiply the integer in sym1 with the one in sym2 and store the result into sym3.
All variables must have type kIntegerType.

idiv syml sym2 sym3

Divide the integer in syml by the one in sym2 and store the result into sym3.
All variables must have type kIntegerType.

ipow syml sym2 sym3

Raise the integer in sym1 to the power of the integer in sym2 and store the result
into sym3. All variables must have type kIntegerType.

radd syml sym2 sym3

Add the reals in variables sym1 and sym2 and store the result into sym3. All
variables must have type kRealType.

rsub syml sym2 sym3

Subtract the real in sym2 from the one in sym1 and store the result into sym3.
All variables must have type kRealType.

rmul symil sym2 sym3

Multiply the real in sym1 with the one in sym2 and store the result into sym3.
All variables must have type kRealType.

26

rdiv symil sym2 sym3

Divide the real in sym1 by the one in sym2 and store the result into sym3. All
variables must have type kRealType.

rpow symil sym2 sym3

Raise the real in sym1 to the power of the real in sym2 and store the result into
sym3. All variables must have type kRealType.

igt syml sym2 sym3

If sym1 is greater than sym2, then store 1 into sym3, otherwise store 0 into sym3.
All variables must have type kIntegerType.

ilt syml sym2 sym3

If sym1 is less than sym2, then store 1 into sym3, otherwise store 0 into sym3.
All variables must have type kIntegerType.

ieq syml sym2 sym3

If sym1 is equal to sym2, then store 1 into sym3, otherwise store 0 into sym3.
All variables must have type kIntegerType.

rgt syml sym2 sym3

If syml is greater than sym2, then store 1 into sym3, otherwise store O into
sym3. syml and sym2 must have type kRealType and sym3 must have type
kIntegerType.

rlt syml sym2 sym3

If syml1 is less than sym2, then store 1 into sym3, otherwise store O into
sym3. syml and sym2 must have type kRealType and sym3 must have type
kIntegerType.

req symil sym2 sym3

If sym1 is equal to sym2, then store 1 into sym3, otherwise store 0 into sym3. sym1
and sym2 must have type kRealType and sym3 must have type kIntegerType.

iand symil sym2 sym3

If sym1 and sym2 are both nonzero, store 1 into sym3, otherwise store 0 into
sym3. All variables must have type kIntegertype.

ior syml sym2 sym3

If at least one of sym1 and sym2 is nonzero, store 1 into sym3, otherwise store 0
into sym3. All variables must have type kIntegertype.

27

inot syml - sym2

If sym1 is nonzero, store 0 into sym2, otherwise store 1 into sym2. All variables
must have type kIntegertype.

jtrue 1bl syml -

Jump to label 1bl if sym1l is nonzero. syml must be of type kIntegerType.

jfalse 1bl syml -

Jump to label 1bl if sym1 is zero. syml must be of type kIntegerType.

jump 1bl - -

Jump to label 1bl.

clabel 1bl - -

Place label 1bl in the code. This ensures that jumps to 1bl start executing the
next quad after the label in the quads list (in other words, it does what you
would expect.)

istore syml - sym2

Store the integer in variable syml into the memory location indicated by sym2.
Both variables must be of type kIntegerType.

iload syml - sym2

Load the integer in the memory location indicated by sym1 to the variable sym2.
Both variables must be of type kIntegerType.

rstore syml - sym2

Store the real in variable syml into the memory location indicated by sym2.
syml must be of type kRealType and sym2 of type kIntegerType.

rload syml - sym2

Load the integer in the memory location indicated by sym1 to the variable sym2.
syml must be of type kRealType and sym2 of type kIntegerType.

creturn - - syml

Causes the currently executing function to return the value in sym1. The type of
syml must be identical with the return type of the currently executing function.

param syml - -

Indicate that sym1 is the next parameter to the next function call. If a function
takes three parameters, then you need to generate three param quads, one for

28

each parameter, and then a call quad to call the function. The type of syml
must be identical to the type of the next parameter in turn.

call syml - sym2

Call the function in syml and have the result returned in sym2. syml must
be a FunctionInformation symbol and the type of sym2 must be identical to
the return type of syml. most recently executed and unused param quads. For
example, if f is a function taking two arguments and g takes one argument,
then the sequence param 1, param 2, call g, param 3, call f will cause g to
be called with parameter 2 and f to be called with parameters 1 and 3.

iassign syml - sym2

Assign the integer value in syml to sym2. Both variables must have type
kIntegerType.

rassign syml - sym2

Assign the real value in sym1 to sym2. Both variables must have type kRealType.

aassign syml int1 sym2

Copy array elements from the array syml to the array sym2. int1 is number of
elements to copy. The element types of syml and sym2 must be identical, and
sym2 must have room for all the copied elements.

hctf - - -

Halt and catch fire. This quad triggers a bug in many versions of the Super-
SPARC chip that causes the CPU to execute a tight microcode loop which causes
the data cache, microcode controller and ALU to generate sufficient heat to ca-
sue a short-circuit between the A.119-66.4471-53 and B.122-41.3212-01 wires
in the instruction decoder. If your compiler generates this quad, you have a
problem.

nop - - -

A do-nothing operation.

7 Global Variables and Constants

The skeleton uses a couple of global variables and constants. There aren’t very
many, and only three that are used a lot.

currentFunction: A pointer to the FunctionInformation object that rep-
resents the function currently being compiled. This object may not yet be
in a symbol table.

kIntegerType : A pointer to the TypeInformation object that represents the
integer type.

29

kRealType : A pointer to the TypeInformation object that represents the
real type.

yytext : A pointer to a string that contains the text of the most recently
scanned token. This variable is supplied by flex.

yylineno : Theline number where the most recently scanned token ends. This
variable is supplied by flex.

errorCount : The number of error messages issued so far.

warningCount : The number of warning messages issued so far.

30

