
Sahand Sadjadee
Department of Information 

and Computer Science
Linköping University

TDDD49
C# and .NET

Programming

(Lecture 03)



       Outline

1. The Presentation Layer
2. Windows Presentation Foundation (WPF)
3. MVVM Design Pattern



The Presentation Layer



The Presentation Layer               https://msdn.microsoft.com/en-us/library/ff647339.aspx#diforwc-ch01_definingthepresentationlayer

● User Interface components. These are the application's visual 
elements used to display information to the user and accept user input.

● Presentation Logic components. Presentation logic is the application 
code that defines the logical behavior and structure of the application in 
a way that is independent of any specific user interface 
implementation. When implementing the Separated Presentation 
pattern, the presentation logic components may include Presenter, 
Presentation Model, and ViewModel components. The presentation layer 
may also include Presentation Layer Model components that 
encapsulate the data from your business layer, or Presentation Entity 
components that encapsulate business logic and data in a form that is 
easily consumable by the presentation layer.

https://msdn.microsoft.com/en-us/library/ff647339.aspx#diforwc-ch01_definingthepresentationlayer


User Interface Elements/Components             



The Presentation Layer               https://msdn.microsoft.com/en-us/library/ff647339.aspx#diforwc-ch01_definingthepresentationlayer

● User interface components�
○ Acquiring data from the user

○ Rendering data to the user

○ Validation, input masking, and using appropriate controls for data input

○ Managing visual layouts, styles, and the general appearance and navigation of the application

○ Encapsulating the effect of globalization and localization

○ Formatting data and displaying it in useful visual styles

○ Browsing, searching, and organizing displayed data

https://msdn.microsoft.com/en-us/library/ff647339.aspx#diforwc-ch01_definingthepresentationlayer


The Presentation Layer Design Considerattions              https://msdn.microsoft.com/en-us/library/ee658081.aspx

● Choose the appropriate application type. 

● Choose the appropriate UI technology. 

● Use the relevant patterns. 

● Design for separation of concerns.

● Consider human interface guidelines. 

● Adhere to user driven design principles. 

https://msdn.microsoft.com/en-us/library/ee658081.aspx


The Presentation Layer Design Issues                       https://msdn.microsoft.com/en-us/library/ee658081.aspx

● Caching
● Communication
● Composition
● Exception Management
● Navigation
● User Experience
● User Interface
● Validation

https://msdn.microsoft.com/en-us/library/ee658081.aspx
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Caching
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Communication
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Composition
https://msdn.microsoft.com/en-us/library/ee658081.aspx#ExceptionManagement
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Navigation
https://msdn.microsoft.com/en-us/library/ee658081.aspx#UserExperience
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Input
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Validation


Category Relevant patterns

Caching Cache Dependency. Use external information to determine the state of data stored in a cache.
Page Cache. Improve the response time for dynamic Web pages that are accessed frequently, but change less often and consume a 
large amount of system resources to construct.

Composition 
and Layout

Composite View. Combine individual views into a composite representation.
Presentation Model (Model-View-ViewModel) pattern. A variation of Model-View-Controller (MVC) tailored for modern UI development 
platforms where the View is the responsibility of a designer rather than a classic developer.
Template View. Implement a common template view, and derive or construct views using this template view.

Exception 
Management

Exception Shielding. Prevent a service from exposing information about its internal implementation when an exception occurs.

Navigation Application Controller. A single point for handling screen navigation.

User 
Experience

Asynchronous Callback. Execute long-running tasks on a separate thread that executes in the background, and provide a function for 
the thread to call back into when the task is complete.
Chain of Responsibility. Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the 
request.

https://msdn.microsoft.com/en-us/library/dn589799.aspx
https://msdn.microsoft.com/en-us/library/ff648482.aspx
https://msdn.microsoft.com/en-us/library/ff921080.aspx
https://msdn.microsoft.com/en-us/library/ff649391.aspx
https://msdn.microsoft.com/en-us/library/ff709908.aspx


                        Facade Design Pattern                                 https://sourcemaking.com/design_patterns/facade

Intent

● Provide a unified interface to a set of interfaces in a subsystem. Facade defines a 

higher-level interface that makes the subsystem easier to use.

● Wrap a complicated subsystem with a simpler interface.

Problem

A segment of the client community needs a simplified interface to the overall 

functionality of a complex subsystem.

Can be used in the Logic Layer? How it helps?

https://sourcemaking.com/design_patterns/facade


The presentation layer contains the UI 
components and more...



                         User Interface Design Principles

● Clarity is job #1
● Interfaces exist to enable interaction
● One primary action per screen
● Provide a natural next step
● Consistency matters
● Strong visual hierarchies work best
● A crucial moment: the zero state
● And more… http://bokardo.com/principles-of-user-interface-design/

http://bokardo.com/principles-of-user-interface-design/


User Interface - bad design examples...



Windows Presentation Foundation



 WPF                                                                      https://msdn.microsoft.com/en-us/library/aa970268(v=vs.100).aspx

                 
● Windows Presentation Foundation (WPF) is a next-generation presentation system for building Windows client applications, 

desktop applications, with visually stunning user experiences. 
● With WPF, you can create a wide range of both standalone and browser-hosted applications.
● The WPF development platform supports a broad set of application development features, including an application model, 

resources, controls, graphics, layout, data binding, documents, and security. 
● WPF is a standard part of .NET framework since version 3.0.

https://msdn.microsoft.com/en-us/library/aa970268(v=vs.100).aspx


WPF application types                                   http://paxcel.net/blog/opting-for-right-wpf-application-type/

                 There are three different types of WPF Applications

● Traditional Desktop Applications

● Navigation Based WPF Application

● WPF Browser Hosted Applications (XBAP)

http://paxcel.net/blog/opting-for-right-wpf-application-type/


 System.Windows Namespaces                                   https://msdn.microsoft.com/en-us/library/gg145013(v=vs.110).aspx

                 
System.Windows contains all the namespaces and classes 
which form WPF framework.

https://msdn.microsoft.com/en-us/library/aa970268%28v=vs
.100%29.aspx

https://msdn.microsoft.com/en-us/library/gg145013(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/aa970268%28v=vs.100%29.aspx
https://msdn.microsoft.com/en-us/library/aa970268%28v=vs.100%29.aspx


Standard WPF Controls                                                                           https://msdn.microsoft.com/en-us/library/bb655881(v=vs.90).aspx                        

                 Control name Description

System.Windows.Controls.Border Displays a border around content.

System.Windows.Controls.Button Enables a user to perform an action by clicking a button. The Buttonbase.Click event occurs when aButton is clicked.

System.Windows.Controls.CheckBox Enables a user to select and clear a check box to indicate a Yes/No or True/False value.

System.Windows.Controls.ComboBox Enables a user to select an item from a drop-down list. The list is displayed when the user clicks a drop-down arrow.

System.Windows.Controls.Grid Defines a flexible grid area that consists of columns and rows.

System.Windows.Controls.Image Displays an image.

System.Windows.Controls.Label Displays text on a form. Provides support for access keys.

System.Windows.Controls.ListBox Enables a user to select an item from a list.

System.Windows.Controls.RadioButton Enables a user to choose from among mutually exclusive items. The selection of one radio button is mutually exclusive to any other radio button in the same container.

System.Windows.Controls.StackPanel Enables you to stack child controls vertically or horizontally.

System.Windows.Control.TabControl Enables visual content to be arranged in a tabular form.

System.Windows.Controls.TextBox Displays unformatted text and enables users to enter text.

https://msdn.microsoft.com/en-us/library/bb655881(v=vs.90).aspx


WPF Architecture                                           https://msdn.microsoft.com/en-us/library/ms750441(v=vs.110).aspx

                 
Key classes: 

System.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

https://msdn.microsoft.com/en-us/library/ms750441(v=vs.110).aspx


 WPF - sample code (C#)                     WPF https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx 

                 
using System.Windows; 
using System.Windows.Controls; 
using System.Windows.Media; 
using System.Windows.Shapes; 
#endregion 
public class WPFWindow : Window 
{ 

private Canvas canvas = new Canvas(); 
public WPFWindow() 
{ 

this.AllowsTransparency = true; 
this.WindowStyle = WindowStyle.None; 
this.Background = Brushes.Black; 
this.Topmost = true; 
this.Width = 400; 
this.Height = 300; 
canvas.Width = this.Width; 
canvas.Height = this.Height; 
canvas.Background = Brushes.Black; 
this.Content = canvas; 

} 
}

Main:

WPFWindow w = new WPFWindow(); 
w.Show();

https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx


What is the problem with this approach?

How can a designer and a programmer work together?

Do our designers need to learn how to program? 

Solution: Seperation of Concerns!



XAML                                                                 https://msdn.microsoft.com/en-us/library/ms752059(v=vs.110).aspx                              

                 
XAML is a declarative markup language. As applied to the .NET Framework programming model, XAML simplifies 
creating a UI for a .NET Framework application. You can create visible UI elements in the declarative XAML 
markup, and then separate the UI definition from the run-time logic by using code-behind files, joined to the 
markup through partial class definitions.

https://msdn.microsoft.com/en-us/library/ms752059(v=vs.110).aspx


 WPF - sample code (XAML/C#)                               WPF https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx 

                 

public class WPFWindow : Window 
{ 

public MainWindow() 

{ InitializeComponent();} 

private void ButtonClicked(object sender, 
RoutedEventArgs e) { 

SubWindow subWindow = new SubWindow(); 
subWindow.Show(); 

}

}

Main:

WPFWindow w = new WPFWindow(); 
w.Show();

<Window x:Class="WPFWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="350" Width="525"> 

<Grid> 
<Button Content="Open Window" Click="ButtonClicked" Height="25" HorizontalAlignment="Left" 

Margin="379,264,0,0" Name="button1" VerticalAlignment="Top" Width="100" /> 
</Grid> 

</Window>

Event handling

https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx


Creating  WPF application in visual studio and blend       https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx 

                 
Windows Presentation Foundation (WPF) in Visual Studio 2015 provides developers with a unified programming model for building 
modern line-of-business desktop applications on Windows.

Blend helps you design top-notch UI look and feel.

https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx


Data Binding                                                                              https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx

                 
Windows Presentation Foundation (WPF) data binding provides a simple and consistent way for applications to 
present and interact with data. Elements can be bound to data from a variety of data sources in the form of 
common language runtime (CLR) objects and XML.

https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx


Data Binding                                                                              https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx

                 
OneWay binding causes changes to the source property to automatically update the target property, but changes to the target 
property are not propagated back to the source property. This type of binding is appropriate if the control being bound is implicitly 
read-only. For instance, you may bind to a source such as a stock ticker or perhaps your target property has no control interface 
provided for making changes, such as a data-bound background color of a table. If there is no need to monitor the changes of the 
target property, using the OneWay binding mode avoids the overhead of the TwoWay binding mode.

https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx


Data Binding                                                                              https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx

                 
TwoWay binding causes changes to either the source property or the target property to automatically update the other. This type of 
binding is appropriate for editable forms or other fully-interactive UI scenarios. Most properties default toOneWay binding, but some 
dependency properties (typically properties of user-editable controls such as the Text property of TextBox and the IsChecked property 
of CheckBox) default to TwoWay binding. A programmatic way to determine whether a dependency property binds one-way or 
two-way by default is to get the property metadata of the property using GetMetadata and then check the Boolean value of the 
BindsTwoWayByDefault property.

https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.textbox.text(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.textbox(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.primitives.togglebutton.ischecked(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.checkbox(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms597487(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.frameworkpropertymetadata.bindstwowaybydefault(v=vs.110).aspx


Explain Binding Mode In WPF           https://www.c-sharpcorner.com/article/explain-binding-mode-in-wpf/

                 

Some demo on binding mode!

https://www.c-sharpcorner.com/article/explain-binding-mode-in-wpf/


Data Binding: How TO                                                              
                 

https://blogs.msdn.microsoft.com/jerrynixon/2012/10/12/xaml-binding-basics-101/

https://blogs.msdn.microsoft.com/jerrynixon/2012/10/12/xaml-binding-basics-101/


Model View ModelView Pattern                                                   https://msdn.microsoft.com/en-us/library/hh848246.aspx

                 
The Model-View-ViewModel pattern can be used on all XAML platforms. Its intent is to provide a clean separation 

of concerns between the user interface controls and their logic.

There are three core components in the MVVM pattern: the model, the view, and the view model. Each serves a 

distinct and separate role. The following illustration shows the relationships between the three components.

http://www.mindscapehq.com/products/wpfelements/mvvm-pattern-in-wpf

https://msdn.microsoft.com/en-us/library/hh848246.aspx
http://www.mindscapehq.com/products/wpfelements/mvvm-pattern-in-wpf


Model View ModelView Pattern                                                   https://msdn.microsoft.com/en-us/library/hh848246.aspx

                 

In order for the view model to participate in two-way data binding with the view, 
its properties must raise the PropertyChanged event.

https://msdn.microsoft.com/en-us/library/hh848246.aspx


MVVM and 3-tier architecture     https://www.codeproject.com/Tips/813345/Basic-MVVM-and-ICommand-Usage-Example
                                                   

                 

https://www.codeproject.com/Tips/813345/Basic-MVVM-and-ICommand-Usage-Example


INotifyPropertyChanged Interface
https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/how-to-implement-property-change-notification

                 ● To support OneWay or TwoWay binding to enable your binding target properties to automatically reflect the dynamic 
changes of the binding source (for example, to have the preview pane updated automatically when the user edits a 
form), your class needs to provide the proper property changed notifications. This example shows how to create a 
class that implements INotifyPropertyChanged.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/how-to-implement-property-change-notification
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#System_Windows_Data_BindingMode_OneWay
https://docs.microsoft.com/en-us/dotnet/api/system.windows.data.bindingmode#System_Windows_Data_BindingMode_TwoWay
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged


ICommand Interface                https://docs.microsoft.com/en-us/dotnet/api/system.windows.input.icommand?view=netframework-4.7.2

                 ● No need to have handler in the code behind.

● Better decoupling, easier testing.

● ICommand is implemented as part of the presentation logic.

● Not mandatory in the course.
● Investigate!

https://docs.microsoft.com/en-us/dotnet/api/system.windows.input.icommand?view=netframework-4.7.2


ObservableCollection<T> Class
https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/how-to-create-and-bind-to-an-observablecollection

                 
ObservableCollection is a collection which allows subscribers to be notified when the contents of the collection are altered. This 

includes replacement of objects, deletion, addition, and movements.

https://www.codeproject.com/Articles/1004644/ObservableCollection-Simply-Explained

https://docs.microsoft.com/en-us/dotnet/framework/wpf/data/how-to-create-and-bind-to-an-observablecollection
https://www.codeproject.com/Articles/1004644/ObservableCollection-Simply-Explained


2D Graphics                                                                                                        https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx

                 
● WPF provides both Drawing and Shape objects to represent graphical drawing content. 
● Drawing objects are simpler constructs than Shape objects and provide better performance characteristics.
● A Shape allows you to draw a graphical shape to the screen. Because they are derived from the FrameworkElement class, 

Shape objects can be used inside panels and most controls.

https://www.tutorialspoint.com/wpf/wpf_2d_graphics.htm

https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.drawing(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.shapes.shape(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.drawing(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.shapes.shape(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.shapes.shape(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.frameworkelement(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.shapes.shape(v=vs.110).aspx
https://www.tutorialspoint.com/wpf/wpf_2d_graphics.htm


2D Graphics - Sample C# code                                                        https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx

                 public static void Main()
{
    var app = new Application();
    var window = new Window();
    var canvas = new Canvas();

    window.Content = canvas;
    canvas.Children.Add(new Line
        {
            X1 = 0,
            Y1 = 0,
            X2 = 400,
            Y2 = 400,
            Stroke = Brushes.Black
        });
    canvas.Children.Add(new Line
        {
            X1 = 0,
            Y1 = 400,
            X2 = 400,
            Y2 = 0,
            Stroke = Brushes.Black
        });

    app.Run(window);
}

System.Windows.Shapes.Line

https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx


 Walkthrough: My First WPF Desktop Application                  https://msdn.microsoft.com/en-us/library/ms752299(v=vs.110).aspx

                 
● Defining XAML to design the appearance of the application's user interface (UI).
● Writing code to build the application's behavior.
● Creating an application definition to manage the application.
● Adding controls and creating the layout to compose the application UI.
● Creating styles to create a consistent appearance throughout an application's UI.
● Binding the UI to data to both populate the UI from data and keep the data and UI synchronized.

https://weblogs.asp.net/scottgu/silverlight-tutorial-part-4-using-style-elements-to-better-encapsulate-look-and-feel

https://msdn.microsoft.com/en-us/library/ms752299(v=vs.110).aspx
https://weblogs.asp.net/scottgu/silverlight-tutorial-part-4-using-style-elements-to-better-encapsulate-look-and-feel


Message Dialog Box        
https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/dialog-boxes-overview

                 ● Display specific information to users.

● Gather information from users.

● Both display and gather information.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/dialog-boxes-overview


Common Dialog Boxes     
https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/dialog-boxes-overview

                 Windows implements a variety of reusable dialog boxes that are common to all applications, including dialog boxes for opening files, 

saving files, and printing.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/dialog-boxes-overview


Font and Color Dialog Boxes        
https://www.codeproject.com/Articles/368070/A-WPF-Font-Picker-with-Color

                 ● The Windows Presentation Framework (WPF) comes with no predefined font dialog and color dialog.

https://www.codeproject.com/Articles/368070/A-WPF-Font-Picker-with-Color


WPF Control Library                  https://docs.microsoft.com/en-us/dotnet/framework/wpf/controls/control-library

                 ● Windows Presentation Foundation (WPF) ships with many of the common UI components that are used in almost every 
Windows application.

● You can add a control to an application by using either Extensible Application Markup Language (XAML) or code.
● It is common to change the appearance of a control to fit the look and feel of your application.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/controls/

https://docs.microsoft.com/en-us/dotnet/framework/wpf/controls/control-library
https://docs.microsoft.com/en-us/dotnet/framework/wpf/controls/


WPF vs Windows Forms        
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/windows-forms-controls-and-equivalent-wpf-controls

                 ● Many Windows Forms controls have equivalent WPF controls, but some Windows Forms controls have no equivalents in WPF.
● It’s not allowed to use Windows Forms in your solution for the labs. 

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/windows-forms-controls-and-equivalent-wpf-controls


Styling and Templating    
https://docs.microsoft.com/en-us/dotnet/framework/wpf/controls/styling-and-templating

                 Windows Presentation Foundation (WPF) styling and templating refer to a suite of features (styles, templates, triggers, and 
storyboards) that allow developers and designers to create visually compelling effects and to create a consistent appearance for their 
product.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/controls/styling-and-templating


WPF Window                 
https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/wpf-windows-overview

                 ● Users interact with Windows Presentation Foundation (WPF) standalone applications through windows.
● The primary purpose of a window is to host content that visualizes data and enables users to interact with data.
● Standalone WPF applications provide their own windows by using the Window class.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/wpf-windows-overview
https://docs.microsoft.com/en-us/dotnet/api/system.windows.window


WPF Application      https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/walkthrough-my-first-wpf-desktop-application

                 
● Use XAML to design the appearance of the application's user interface (UI).

● Write code to build the application's behavior.

● Create an application definition to manage the application.

● Add controls and create the layout to compose the application UI.

● Create styles for a consistent appearance throughout an application's UI.

● Bind the UI to data to both populate the UI from data and keep the data and UI synchronized.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/walkthrough-my-first-wpf-desktop-application


Thanks for listening!


