
Sahand Sadjadee
Department of Information

and Computer Science
Linköping University

TDDD49/725G66
C# and .NET

Programming

(Lecture 01)

 Outline

1. Course information
2. Introduction to C#, .NET and Visual studio
3. The C# language

 Staff

Examiner and Course leader: Sahand Sadjadee
Assistants: Dennis Persson, Iliyas Jorio
Course Secretary: Jenny Lönn
Director of studies: Jalal Maleki

 Our assumptions

As this is not a mandatory course and most of the students have had some programming
course before, we assume the following:

● enough foundation of programming.
● being highly motivated to complete this course.
● being able to spend 107 hours on this course.

 Goals

By the end of this course you are expected:

● To have a good and practical knowledge of C# and .NET framework.
● To have a good and practical knowledge of Microsoft Visual Studio as a development

tool.
● To have improved teamwork and problem solving skills.

 Course Literature

Dietels C# 6 for programmers, 6/e
http://www.deitel.com/Books/C/C6forProgrammersSixthEdition/tabid/3682/Default.aspx

MSDN has always been a good resource for developers!

http://www.deitel.com/Books/C/C6forProgrammersSixthEdition/tabid/3682/Default.aspx

 Structure

● 5 lectures
● 15+1 supervised lab sessions (The last lab session is only dedicated to presentations)

● 3 unsupervised lab sessions
● The last week, v51, is only for presenting and if needed improving code according to

the received comments.

Course duration: Weeks 44-51 (8 weeks)

 Lab assignments

● 4 interrelated lab assignments which form a project.
● It’s all about P2P.
● You are mostly in control as long as you hold on to our requirements!

● It is mandatory to work in pair!

 Lab assessment

● The final work shall be presented to your direct lab assistant by the end of the
course.

● Register yourself on Webreg to one of two available lab assistants no later than
november 14th!

● It is highly recommended to present your work lab by lab instead of presenting all
four labs by the end of the course.

● The code shall be handed in to your direct lab assistant for further examination.

Any Questions?

C Family Languages

C 1972

C++ 1983

Java 1995

C# 2000 // the syntax very similar to C, C++, Java.

The Godfather

Anders Hejlsberg

Known for Turbo Pascal, Delphi, C#, TypeScript

Occupation Programmer, System Architect

Employer Microsoft

https://en.wikipedia.org/wiki/Turbo_Pascal
https://en.wikipedia.org/wiki/Embarcadero_Delphi
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/TypeScript

C# Version History
Version Language specification Date .NET Framework Visual Studio

ECMA ISO/IEC Microsoft

C# 1.0 December 2002 April 2003 January 2002 January 2002 .NET Framework 1.0 Visual Studio .NET 2002

C# 1.1
C# 1.2

October 2003 April 2003 .NET Framework 1.1 Visual Studio .NET 2003

C# 2.0 June 2006 September 2006 September 2005[c] November 2005 .NET Framework 2.0 Visual Studio 2005

C# 3.0

None[d]

August 2007 November 2007
.NET Framework 2.0 (Except LINQ)[39]

.NET Framework 3.0 (Except LINQ)[39]

.NET Framework 3.5

Visual Studio 2008
Visual Studio 2010

C# 4.0 April 2010 April 2010 .NET Framework 4 Visual Studio 2010

C# 5.0 December 2017
None[d] June 2013 August 2012 .NET Framework 4.5 Visual Studio 2012

Visual Studio 2013

C# 6.0
None[d]

Draft July 2015 .NET Framework 4.6 Visual Studio 2015

C# 7.0 None March 2017 .NET Framework 4.6.2 Visual Studio 2017

C# 7.1 None None None August 2017 .NET Framework 4.7 Visual Studio 2017 version 15.3[40]

C# 7.2 None None None November 2017 .NET Framework 4.7.1 Visual Studio 2017 version 15.5[41]

C# 7.3 None None None May 2018 .NET Framework 4.7.2 Visual Studio 2017 version 15.7[41

https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Visual_Studio
https://en.wikipedia.org/wiki/Ecma_International
https://en.wikipedia.org/wiki/ISO/IEC
https://en.wikipedia.org/wiki/Microsoft
http://www.ecma-international.org/publications/files/ECMA-ST-WITHDRAWN/ECMA-334,%202nd%20edition,%20December%202002.pdf
http://www.techstreet.com/cgi-bin/pdf/free/378672/ISO+IEC+23270-2003.pdf
http://download.microsoft.com/download/a/9/e/a9e229b9-fee5-4c3e-8476-917dee385062/CSharp%20Language%20Specification%20v1.0.doc
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_1.0
https://en.wikipedia.org/wiki/Visual_Studio_.NET
http://download.microsoft.com/download/5/e/5/5e58be0a-b02b-41ac-a4a3-7a22286214ff/csharp%20language%20specification%20v1.2.doc
https://en.wikipedia.org/wiki/.NET_Framework_1.1
https://en.wikipedia.org/wiki/Visual_Studio_.NET_2003
https://en.wikipedia.org/wiki/C_Sharp_2.0
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/c042926_ISO_IEC_23270_2006(E).zip
http://download.microsoft.com/download/9/8/f/98fdf0c7-2bbd-40d3-9fd1-5a4159fa8044/csharp%202.0%20specification_sept_2005.doc
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-41
https://en.wikipedia.org/wiki/.NET_Framework_2.0
https://en.wikipedia.org/wiki/Visual_Studio_2005
https://en.wikipedia.org/wiki/C_Sharp_3.0
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-no345-42
http://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-75351c669b09/CSharp%20Language%20Specification.doc
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-danielmoth1-43
https://en.wikipedia.org/wiki/.NET_Framework_3.0
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-danielmoth1-43
https://en.wikipedia.org/wiki/.NET_Framework_3.5
https://en.wikipedia.org/wiki/Visual_Studio_2008
https://en.wikipedia.org/wiki/Visual_Studio_2010
https://en.wikipedia.org/wiki/C_Sharp_4.0
https://en.wikipedia.org/wiki/.NET_Framework_4.0
https://en.wikipedia.org/wiki/Visual_Studio_2010
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-no345-42
https://www.microsoft.com/en-us/download/details.aspx?id=7029
https://en.wikipedia.org/wiki/.NET_Framework_4.5
https://en.wikipedia.org/wiki/Visual_Studio_2012
https://en.wikipedia.org/wiki/Visual_Studio_2013
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-no345-42
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/
https://en.wikipedia.org/wiki/.NET_Framework_4.6
https://en.wikipedia.org/wiki/Visual_Studio_2015
https://en.wikipedia.org/wiki/.NET_Framework_4.6.2
https://en.wikipedia.org/wiki/Visual_Studio_2017
https://en.wikipedia.org/w/index.php?title=.NET_Framework_4.7&action=edit&redlink=1
https://en.wikipedia.org/wiki/Visual_Studio_2017
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-44
https://en.wikipedia.org/wiki/.NET_Framework_4.7.1
https://en.wikipedia.org/wiki/Visual_Studio_2017
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-visualstudio.com-45
https://en.wikipedia.org/wiki/.NET_Framework_4.7.2
https://en.wikipedia.org/wiki/Visual_Studio_2017
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-visualstudio.com-45

Java/C#/C++/C (Happy Family)

// A Java Hello World Console Application

public class Hello {

 public static void main (String args[]) {

 System.out.println ("Hello World");

 }

}

// A C# Hello World Console Application.

public class Hello

{

 static void Main()

 {

 System.Console.WriteLine("Hello World");

 }

}

// A C++ Hello World Console Application

#include <iostream>

int main()

{

 std::cout << "Hello World!";

 return 0;

}

// A C Hello World Console Application

#include <stdio.h>

int main() {
 /* my first program in C */
 printf("Hello, World! \n");

 return 0;
}

Microsoft Visual Studio
Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It is used to develop
computer programs for Microsoft Windows, as well as web sites, web applications and web services. Visual Studio
uses Microsoft software development platforms such as Windows API, Windows Forms, Windows Presentation
Foundation, Windows Store and Microsoft Silverlight. It can produce both native code and managed code.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Windows_Forms
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Windows_Store
https://en.wikipedia.org/wiki/Microsoft_Silverlight
https://en.wikipedia.org/wiki/Native_code
https://en.wikipedia.org/wiki/Managed_code

.NET Framework

● Programmers produce software by combining their own source code with .NET Framework and other
libraries.

● Microsoft .NET is a platform for developing “managed” software.
● Managed code is computer program source code that requires and will execute only under the management

of a Common Language Runtime virtual machine, typically the .NET Framework, or Mono. The term was
coined by Microsoft.

https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/Microsoft

Common Language Runtime (CLR)

The .NET Framework provides a run-time environment called the common language runtime, which runs the code
and provides services that make the development process easier.

The Common Language Runtime (CLR), the virtual machine component of Microsoft's .NET framework, manages
the execution of .NET programs. A process known as just-in-time compilation converts compiled code into machine
instructions which the computer's CPU then executes.

Equivalent to
Java Runtime Environment(JRE)

https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/.NET_framework
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/CPU

Common Language Runtime(CLR)

● The ability to easily use components developed in other languages.

● Extensible types provided by a class library.

● Language features such as inheritance, interfaces, and overloading for object-oriented

programming.

● Support for threads that allows creation of multithreaded, scalable applications.

● Support for structured exception handling.

● Support for custom attributes.

● Garbage collection.

● Use of delegates instead of function pointers for increased type safety and security.

CLR version .NET version

1.0 1.0

1.1 1.1
2.0 2.0, 3.0, 3.5

4 4, 4.5, 4.6, 4.7

https://en.wikipedia.org/wiki/Thread_%28computing%29
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_1.0
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_1.1
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_2.0
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_3.0
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_3.5
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.5
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.6
https://en.wikipedia.org/wiki/.NET_Framework_version_history#.NET_Framework_4.7

.NET Framework

Common Language Runtime (CLR)

C# Execution Model

C/C++ Execution Model (for comparison)

Java Execution Model (for comparison)

 Diving Deeper into

Keywords

78 reserved keywords. E.g.
30 contextual keywords (contextual keywords are not reserved but they do have a special meaning depending on
the context)

For example:

class TimePeriod

{

 private double _seconds;

 public double Seconds

 {

 set { _seconds = value; }

 }

} https://msdn.microsoft.com/en-us/library/x53a06bb.aspx

Contextual keyword

Reserved keywords

https://msdn.microsoft.com/en-us/library/x53a06bb.aspx

Primitive datatypes https://msdn.microsoft.com/en-us/library/ms228360(v=vs.90).aspx

Short
Name

.NET
Class

Type Width Range (bits)

byte Byte Unsigned integer 8 0 to 255

sbyte SByte Signed integer 8 -128 to 127

int Int32 Signed integer 32 -2,147,483,648 to
2,147,483,647

uint UInt32 Unsigned integer 32 0 to 4294967295

short Int16 Signed integer 16 -32,768 to 32,767

ushort UInt16 Unsigned integer 16 0 to 65535

long Int64 Signed integer 64 -92233720368547758
08 to
922337203685477580
7

https://msdn.microsoft.com/en-us/library/ms228360(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.byte(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.sbyte(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.int32(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.uint32(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.int16(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.uint16(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.int64(v=vs.90).aspx

Primitive datatypes https://msdn.microsoft.com/en-us/library/ms228360(v=vs.90).aspx

ulong UInt64 Unsigned integer 64 0 to
18446744073709551615

float Single Single-precision floating point type 32 -3.402823e38 to
3.402823e38

double Double Double-precision floating point type 64 -1.79769313486232e308 to
1.79769313486232e308

char Char A single Unicode character 16 Unicode symbols used in
text

bool Boolean Logical Boolean type 8 True or false

object Object Base type of all other types

string String A sequence of characters

decimal Decimal Precise fractional or integral type that can represent
decimal numbers with 29 significant digits

128 ±1.0 × 10e−28 to ±7.9 ×
10e28

https://msdn.microsoft.com/en-us/library/ms228360(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.uint64(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.single(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.double(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.char(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.boolean(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.object(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.string(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/system.decimal(v=vs.90).aspx

Reference types

● There are two kinds of types in C#: reference types and value types.
● Variables of reference types store references to their data (objects), while variables of value types directly

contain their data.
● With reference types, two variables can reference the same object; therefore, operations on one variable

can affect the object referenced by the other variable.
● With value types, each variable has its own copy of the data, and it is not possible for operations on one

variable to affect the other.

https://msdn.microsoft.com/en-us/library/490f96s2.aspx

https://msdn.microsoft.com/en-us/library/490f96s2.aspx

Reference types

The following keywords are used to declare reference types:

● class

● interface

● delegate

C# also provides the following built-in reference types:

● dynamic

● object

● string

https://msdn.microsoft.com/en-us/library/0b0thckt.aspx
https://msdn.microsoft.com/en-us/library/87d83y5b.aspx
https://msdn.microsoft.com/en-us/library/900fyy8e.aspx
https://msdn.microsoft.com/en-us/library/dd264741.aspx
https://msdn.microsoft.com/en-us/library/9kkx3h3c.aspx
https://msdn.microsoft.com/en-us/library/362314fe.aspx

Arrays https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/

● An array is a data structure that contains a number of variables called the elements of the array.
● The array elements are accessed through computed indexes.
● C# arrays are zero indexed; that is, the array indexes start at zero.
● All of the array elements must be of the same type, which is called the element type of the array.
● Array elements can be of any type, including an array type.
● An array can be a single-dimensional array, or a multidimensional array.
● Array types are reference types derived from the abstract base type System.Array.

● Single-Dimensional Arrays
● Multidimensional Arrays
● Jagged Arrays

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/
https://msdn.microsoft.com/en-us/library/490f96s2(v=vs.71).aspx
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/single-dimensional-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/multidimensional-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/jagged-arrays

Declaration/initialization

Declarations in a C# program define the constituent elements of the program.

string name = “Bill Gates”;

int age = 61;

Float weight = 72;

Company ins = new Company(“Microsoft”, name);

int[] salaries = int[12];

Operators https://msdn.microsoft.com/en-us/library/ms173145.aspx

+ Adds two operands A + B = 30

- Subtracts second operand from the first A - B = -10

* Multiplies both operands A * B = 200

/ Divides numerator by de-numerator B / A = 2

% Modulus Operator and remainder of after an integer division B % A = 0

++ Increment operator increases integer value by one A++ = 11

-- Decrement operator decreases integer value by one A-- = 9

Arithmetic Operators

https://msdn.microsoft.com/en-us/library/ms173145.aspx

Operators https://msdn.microsoft.com/en-us/library/ms173145.aspx

Relational Operators

== Checks if the values of two operands are equal or not, if yes then condition becomes true. (A == B) is not

true.

!= Checks if the values of two operands are equal or not, if values are not equal then condition becomes true. (A != B) is true.

> Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true. (A > B) is not

true.

< Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true. (A < B) is true.

>= Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition

becomes true.

(A >= B) is not

true.

<= Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition

becomes true.

(A <= B) is true.

https://msdn.microsoft.com/en-us/library/ms173145.aspx

Operators https://msdn.microsoft.com/en-us/library/ms173145.aspx

Logical operators

&& Called Logical AND operator. If both the operands are non

zero then condition becomes true.

(A && B)

is false.

|| Called Logical OR Operator. If any of the two operands is

non zero then condition becomes true.

(A || B)

is true.

! Called Logical NOT Operator. Use to reverses the logical

state of its operand. If a condition is true then Logical NOT

operator will make false.

!(A &&

B) is

true.

https://msdn.microsoft.com/en-us/library/ms173145.aspx

Operators https://msdn.microsoft.com/en-us/library/ms173145.aspx

Bitwise operators

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

https://msdn.microsoft.com/en-us/library/ms173145.aspx

Expressions https://msdn.microsoft.com/en-us/library/ms173144.aspx

An expression is a sequence of one or more operands and zero or more operators that can be evaluated to a single

value, object, method, or namespace. Expressions can consist of a literal value, a method invocation, an operator

and its operands, or a simple name. Simple names can be the name of a variable, type member, method

parameter, namespace or type.

((x < 10) && (x > 5)) || ((x > 20) && (x < 25))

System.Convert.ToInt32("35")

https://msdn.microsoft.com/en-us/library/ms173144.aspx

Control Structures

● Sequence structure

● Selection structure

○ the single-selection structure (if)

○ the double-selection structure (if...else)

○ Multiple-selection (switch)

○ Conditional operator ?:

● Iteration structure

○ Sentinel-controlled repetition (while)

○ Sentinel-controlled repetition (do...while)

○ Counter-controlled repetition (for)

○ foreach

https://msdn.microsoft.com/en-us/library/5011f09h.aspx
https://msdn.microsoft.com/en-us/library/5011f09h.aspx
https://msdn.microsoft.com/en-us/library/06tc147t.aspx
https://msdn.microsoft.com/en-us/library/ty67wk28.aspx
https://msdn.microsoft.com/en-us/library/2aeyhxcd.aspx
https://msdn.microsoft.com/en-us/library/kefxt662(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ch45axte.aspx
https://msdn.microsoft.com/en-us/library/ttw7t8t6.aspx

Control Structures

Control statements can be combined by using the following techniques:

● Stacking

● Nesting

Control Structures

Nesting

if(boolean_expression 1)
{
 /* Executes when the boolean expression 1 is
true */
 if(boolean_expression 2)
 {
 /* Executes when the boolean expression 2
is true */
 }
}

Stacking

if(boolean_expression 1)
{
}

/* Executes no matter expression 1 is true or false
*/
if(boolean_expression 2)
{
 /* Executes when the boolean expression 2 is
true */
}

Control Structures

Break and continue keywords can be used to manipulate the flow.

https://msdn.microsoft.com/en-us/library/adbctzc4.aspx
https://msdn.microsoft.com/en-us/library/923ahwt1.aspx

Classes

A class is a construct that enables you to create your own custom types by grouping together variables of other

types, methods and events.

public class Customer //class header

{ //class body

 //Fields, properties, methods and events go here…

 private int age;

 public List<Shopping> getListOfShoppings();

}

https://msdn.microsoft.com/en-us/library/x9afc042.aspx

Identifier which by principle starts with a capital letter

https://msdn.microsoft.com/en-us/library/x9afc042.aspx

Classes - Objects/Instances

A class or struct definition is like a blueprint that specifies what the type can do. An object is basically a block of

memory that has been allocated and configured according to the blueprint. A program may create many objects of

the same class. Objects are also called instances, and they can be stored in either a named variable or in an array or

collection.

It is possible to instantiate a class using the new operator:

Class1 obj = new Class1();

https://msdn.microsoft.com/en-us/library/ms173110.aspx

https://msdn.microsoft.com/en-us/library/51y09td4.aspx
https://msdn.microsoft.com/en-us/library/ms173110.aspx

Classes - using directive
https://msdn.microsoft.com/en-us/library/sf0df423.aspx

● To allow the use of types in a namespace so that you do not have to qualify the use of a type in that

namespace:

using System.Text;

● To allow you to access static members of a type without having to qualify the access with the type name:

using static System.Math;

● To create an alias for a namespace or a type. This is called a using alias directive.

using Project = PC.MyCompany.Project;

https://msdn.microsoft.com/en-us/library/sf0df423.aspx

Classes - Fields/Methods

● Use a value type/reference type variable to define an attribute of an object. E.g. Human.Weight,

Human.Height

● Use a method to define a behaviour of an object. E.g. Human.Walk(), Human.Sleep()

Public class Human

{

pnt Height = 12;

 public void Sleep(int hours)

 { //code

 }

}

Classes - Access modifiers

The following keywords can manipulate the level of access to the class and its members.

● Public Access is not restricted. (type and member)
● Protected Access is limited to the containing class or types derived from the containing class. (member)
● Internal Access is limited to the current assembly. This is the default A.M. if no other modifier is defined.(type and member)
● Private Access is limited to the containing type. (member)

protected internal: Access is limited to the current assembly or types derived from the containing class. (member)

https://msdn.microsoft.com/en-us/library/wxh6fsc7.aspx

https://msdn.microsoft.com/en-us/library/yzh058ae.aspx
https://msdn.microsoft.com/en-us/library/bcd5672a.aspx
https://msdn.microsoft.com/en-us/library/7c5ka91b.aspx
https://msdn.microsoft.com/en-us/library/st6sy9xe.aspx
https://msdn.microsoft.com/en-us/library/ms173121.aspx
https://msdn.microsoft.com/en-us/library/wxh6fsc7.aspx

Classes - properties
https://msdn.microsoft.com/en-us/library/w86s7x04.aspx

Properties combine aspects of both fields and methods. To the user of an object, a property appears to be a field, accessing the property requires

the same syntax. To the implementer of a class, a property is one or two code blocks, representing a get accessor and/or a set accessor.

public class Date

{

 private int month = 7; // Backing store

 public int Month

 {

 get

 {

 return month;

 }

 set

 {

 if ((value > 0) && (value < 13))

 {

 month = value;

 }

 }

 }

}

https://msdn.microsoft.com/en-us/library/w86s7x04.aspx
https://msdn.microsoft.com/en-us/library/ms228503.aspx
https://msdn.microsoft.com/en-us/library/ms228368.aspx

Classes - constructors https://msdn.microsoft.com/en-us/library/k6sa6h87.aspx

Instance constructors are used to create and initialize any instance member variables when you use the new

expression to create an object of a class.

class CoOrds

{

 public int x, y;

 // constructor

 public CoOrds(int xv, int yv)

 {

 x = xv;

 y = yv;

 }

}

https://msdn.microsoft.com/en-us/library/k6sa6h87.aspx
https://msdn.microsoft.com/en-us/library/51y09td4.aspx
https://msdn.microsoft.com/en-us/library/0b0thckt.aspx

Classes - Destructor https://msdn.microsoft.com/en-us/library/66x5fx1b.aspx

Destructors are used to destruct instances of classes.

Remarks

● Destructors cannot be defined in structs. They are only used with classes.

● A class can only have one destructor.

● Destructors cannot be inherited or overloaded.

● Destructors cannot be called. They are invoked automatically.

● A destructor does not take modifiers or have parameters.

class Car

{

 ~Car() // destructor

 {

 // cleanup statements...

 }

}

https://msdn.microsoft.com/en-us/library/66x5fx1b.aspx

Classes - static members https://msdn.microsoft.com/en-us/library/98f28cdx.aspx

Use the static modifier to declare a static member, which belongs to the type itself rather than to a specific object.

The static modifier can be used with classes, fields, methods, properties, operators, events, and constructors, but it

cannot be used with indexers, destructors, or types other than classes.

static class CompanyEmployee

{

 public static void DoSomething() { /*...*/ }

 public static void DoSomethingElse() { /*...*/ }

}

public class MyBaseC

{

 public struct MyStruct

 {

 public static int x = 100;

 }

}

Console.WriteLine(MyBaseC.MyStruct.x);

https://msdn.microsoft.com/en-us/library/98f28cdx.aspx

Namespaces https://msdn.microsoft.com/en-us/library/z2kcy19k.aspx

The namespace keyword is used to declare a scope that contains a set of related objects. You can use a

namespace to organize code elements and to create globally unique types.

Remarks
Within a namespace, you can declare one or more of the following types:

● another namespace
● class
● interface
● struct
● enum
● delegate

https://msdn.microsoft.com/en-us/library/z2kcy19k.aspx
https://msdn.microsoft.com/en-us/library/0b0thckt.aspx
https://msdn.microsoft.com/en-us/library/87d83y5b.aspx
https://msdn.microsoft.com/en-us/library/ah19swz4.aspx
https://msdn.microsoft.com/en-us/library/sbbt4032.aspx
https://msdn.microsoft.com/en-us/library/900fyy8e.aspx

Methods https://msdn.microsoft.com/en-us/library/ms173114.aspx

A method is a code block that contains a series of statements. A program causes the statements to be executed
by calling the method and specifying any required method arguments. In C#, every executed instruction is
performed in the context of a method. The Main method is the entry point for every C# application and it is called
by the common language runtime (CLR) when the program is started.

Method Signatures
Methods are declared in a class or struct by specifying the access level such as public or private, optional modifiers such as
abstract or sealed, the return value, the name of the method, and any method parameters. These parts together are the
signature of the method.

https://msdn.microsoft.com/en-us/library/ms173114.aspx
https://msdn.microsoft.com/en-us/library/0b0thckt.aspx
https://msdn.microsoft.com/en-us/library/ah19swz4.aspx

Methods-pass by reference vs pass by value https://msdn.microsoft.com/en-us/library/ms173114.aspx

By default, when a value type is passed to a method, a copy is passed instead of the object itself. Therefore,

changes to the argument have no effect on the original copy in the calling method. You can pass a value-type by

reference by using the ref keyword.

When an object of a reference type is passed to a method, a reference to the object is passed. That is, the method

receives not the object itself but an argument that indicates the location of the object. If you change a member of

the object by using this reference, the change is reflected in the argument in the calling method, even if you pass

the object by value.

https://msdn.microsoft.com/en-us/library/ms173114.aspx

Methods -return value https://msdn.microsoft.com/en-us/library/ms173114.aspx

● The method can return a value if a return type other than void is declared in the signature

● A method can have multiple return statements as long as all of them are reachable

● The returned values is replaced with the method call statement.

https://msdn.microsoft.com/en-us/library/ms173114.aspx

Methods - overloading https://msdn.microsoft.com/en-us/library/ms229029(v=vs.110).aspx

Member overloading means creating two or more members on the same type that differ only in the number or

type of parameters but have the same name. For example, in the following, the WriteLinemethod is overloaded:

public static class Console {

 public void WriteLine();

 public void WriteLine(string value);

 public void WriteLine(bool value);

 ...

}

Because only methods, constructors, and indexed properties can have parameters, only those members can be

overloaded.

https://msdn.microsoft.com/en-us/library/ms229029(v=vs.110).aspx

Methods - optional parameters

● A method can have multiple optional parameters.

● All optional parameters must be placed at the right side of non-optional parameters.

● A optional parameter has a = sign followed by the default value.

● The default value shall be used in case that no argument is provided upon the method call.

Example,

Void WriteLine(string text, string footer = “”)

{

}

Methods - named arguments

Named arguments free you from the need to remember or to look up the order of parameters in the parameter

lists of called methods. The parameter for each argument can be specified by parameter name.

Example,

Void WriteLine(string text, string footer)

{

}

WriteLine(footer : “LiU University”, text : “this is a test!”); //method call using named arguments

WriteLine(“this is a test!”, “LiU University”); //method call without using named arguments

https://msdn.microsoft.com/en-us/library/dd264739.aspx#sectionToggle0

https://msdn.microsoft.com/en-us/library/dd264739.aspx#sectionToggle0

Thanks for listening!

