
Sahand Sadjadee
Linköping University

TDDD49
C# and .NET

Programming

(Lecture 03)

 Outline

1. Some comments on lab 1.
2. The Presentation Layer
3. Windows Presentation Foundation (.NET)
4. ASP .NET
5. MVVM Design Pattern

Some comments on lab 1!

Some comments on lab 1

● Use separate folders, packages, and namespaces for organizing your files. Each folder and namespace

shall contain the files related to one layer.

● Creating and using a Visual Studio WPF project helps later on in upcoming labs.

● Talk to us about your implementation so we can give you some feedback. This might save your time

later on.

The Presentation Layer

The Presentation Layer https://msdn.microsoft.com/en-us/library/ff647339.aspx#diforwc-ch01_definingthepresentationlayer

● User Interface components. These are the application's visual
elements used to display information to the user and accept user input.

● Presentation Logic components. Presentation logic is the application
code that defines the logical behavior and structure of the application in
a way that is independent of any specific user interface
implementation. When implementing the Separated Presentation
pattern, the presentation logic components may include Presenter,
Presentation Model, and ViewModel components. The presentation layer
may also include Presentation Layer Model components that
encapsulate the data from your business layer, or Presentation Entity
components that encapsulate business logic and data in a form that is
easily consumable by the presentation layer.

https://msdn.microsoft.com/en-us/library/ff647339.aspx#diforwc-ch01_definingthepresentationlayer

User Interface Elements/Components

The Presentation Layer https://msdn.microsoft.com/en-us/library/ff647339.aspx#diforwc-ch01_definingthepresentationlayer

● User interface components�
a. Acquiring data from the user

b. Rendering data to the user

c. Validation, input masking, and using appropriate controls for data input

d. Managing visual layouts, styles, and the general appearance and navigation of the application

e. Encapsulating the effect of globalization and localization

f. Formatting data and displaying it in useful visual styles

g. Browsing, searching, and organizing displayed data

https://msdn.microsoft.com/en-us/library/ff647339.aspx#diforwc-ch01_definingthepresentationlayer

The Presentation Layer Design Considerattions https://msdn.microsoft.com/en-us/library/ee658081.aspx

● Choose the appropriate application type. Choose the appropriate UI technology.

● Use the relevant patterns.

● Design for separation of concerns.

● Consider human interface guidelines.

● Adhere to user driven design principles.

https://msdn.microsoft.com/en-us/library/ee658081.aspx

The Presentation Layer Design Issues https://msdn.microsoft.com/en-us/library/ee658081.aspx

● Caching
● Communication
● Composition
● Exception Management
● Navigation
● User Experience
● User Interface
● Validation

https://msdn.microsoft.com/en-us/library/ee658081.aspx
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Caching
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Communication
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Composition
https://msdn.microsoft.com/en-us/library/ee658081.aspx#ExceptionManagement
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Navigation
https://msdn.microsoft.com/en-us/library/ee658081.aspx#UserExperience
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Input
https://msdn.microsoft.com/en-us/library/ee658081.aspx#Validation

Category Relevant patterns

Caching Cache Dependency. Use external information to determine the state of data stored in a cache.
Page Cache. Improve the response time for dynamic Web pages that are accessed frequently, but change less often and consume a
large amount of system resources to construct.

Composition
and Layout

Composite View. Combine individual views into a composite representation.
Presentation Model (Model-View-ViewModel) pattern. A variation of Model-View-Controller (MVC) tailored for modern UI development
platforms where the View is the responsibility of a designer rather than a classic developer.
Template View. Implement a common template view, and derive or construct views using this template view.
Transform View. Transform the data passed to the presentation tier into HTML for display in the UI.
Two-Step View. Transform the model data into a logical presentation without any specific formatting, and then convert that logical
presentation to add the actual formatting required.

Exception
Management

Exception Shielding. Prevent a service from exposing information about its internal implementation when an exception occurs.

Navigation Application Controller. A single point for handling screen navigation.
Front Controller. A Web only pattern that consolidates request handling by channeling all requests through a single handler object,
which can be modified at run time with decorators.
Page Controller. Accept input from the request and handle it for a specific page or action on a Web site.
Command. Encapsulate request processing in a separate command object with a common execution interface.

User
Experience

Asynchronous Callback. Execute long-running tasks on a separate thread that executes in the background, and provide a function for
the thread to call back into when the task is complete.
Chain of Responsibility. Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the
request.

https://msdn.microsoft.com/en-us/library/dn589799.aspx
https://msdn.microsoft.com/en-us/library/ff648482.aspx
https://msdn.microsoft.com/en-us/library/ff921080.aspx
https://msdn.microsoft.com/en-us/library/ff649391.aspx
https://msdn.microsoft.com/en-us/library/ff709908.aspx
https://msdn.microsoft.com/en-us/library/ff648617.aspx
https://msdn.microsoft.com/en-us/library/ff648482.aspx

 Facade Design Pattern https://sourcemaking.com/design_patterns/facade

Intent

● Provide a unified interface to a set of interfaces in a subsystem. Facade defines a

higher-level interface that makes the subsystem easier to use.

● Wrap a complicated subsystem with a simpler interface.

Problem

A segment of the client community needs a simplified interface to the overall

functionality of a complex subsystem.

Can be used in Logic Layer? How it helps?

https://sourcemaking.com/design_patterns/facade

The presentation layer contains the UI
components and more...

 User Interface Design Principles

● Clarity is job #1
● Interfaces exist to enable interaction
● One primary action per screen
● Provide a natural next step
● Consistency matters
● Strong visual hierarchies work best
● A crucial moment: the zero state
● And more… http://bokardo.com/principles-of-user-interface-design/

http://bokardo.com/principles-of-user-interface-design/

User Interface - bad design examples...

Windows Presentation Foundation

 WPF https://msdn.microsoft.com/en-us/library/aa970268(v=vs.100).aspx

Windows Presentation Foundation (WPF) is a next-generation presentation system for building Windows client applications,
desktop applications, with visually stunning user experiences. With WPF, you can create a wide range of both standalone and
browser-hosted applications.

The WPF development platform supports a broad set of application development features, including an application model,
resources, controls, graphics, layout, data binding, documents, and security.

WPF is a standard part of .NET framework since version 3.0.

https://msdn.microsoft.com/en-us/library/aa970268(v=vs.100).aspx

 System.Windows Namespaces https://msdn.microsoft.com/en-us/library/gg145013(v=vs.110).aspx

System.Windows contains all the namespaces and classes
which form WPF framework.

https://msdn.microsoft.com/en-us/library/aa970268%28v=vs
.100%29.aspx

https://msdn.microsoft.com/en-us/library/gg145013(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/aa970268%28v=vs.100%29.aspx
https://msdn.microsoft.com/en-us/library/aa970268%28v=vs.100%29.aspx

Standard WPF Controls https://msdn.microsoft.com/en-us/library/bb655881(v=vs.90).aspx

 Control name Description

System.Windows.Controls.Border Displays a border around content.

System.Windows.Controls.Button Enables a user to perform an action by clicking a button. The Buttonbase.Click event occurs when aButton is clicked.

System.Windows.Controls.CheckBox Enables a user to select and clear a check box to indicate a Yes/No or True/False value.

System.Windows.Controls.ComboBox Enables a user to select an item from a drop-down list. The list is displayed when the user clicks a drop-down arrow.

System.Windows.Controls.Grid Defines a flexible grid area that consists of columns and rows.

System.Windows.Controls.Image Displays an image.

System.Windows.Controls.Label Displays text on a form. Provides support for access keys.

System.Windows.Controls.ListBox Enables a user to select an item from a list.

System.Windows.Controls.RadioButton Enables a user to choose from among mutually exclusive items. The selection of one radio button is mutually exclusive to any other radio
button in the same container.

System.Windows.Controls.StackPanel Enables you to stack child controls vertically or horizontally.

System.Windows.Control.TabControl Enables visual content to be arranged in a tabular form.

System.Windows.Controls.TextBox Displays unformatted text and enables users to enter text.

https://msdn.microsoft.com/en-us/library/bb655881(v=vs.90).aspx

WPF Architecture https://msdn.microsoft.com/en-us/library/ms750441(v=vs.110).aspx

Key classes:

System.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

https://msdn.microsoft.com/en-us/library/ms750441(v=vs.110).aspx

 WPF - sample code (C#) WPF https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Windows.Shapes;
#endregion
public class WPFWindow : Window
{

private Canvas canvas = new Canvas();
public WPFWindow()
{

this.AllowsTransparency = true;
this.WindowStyle = WindowStyle.None;
this.Background = Brushes.Black;
this.Topmost = true;
this.Width = 400;
this.Height = 300;
canvas.Width = this.Width;
canvas.Height = this.Height;
canvas.Background = Brushes.Black;
this.Content = canvas;

}
}

Main:

WPFWindow w = new WPFWindow();
w.Show();

https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx

What is the problem with this approach?
How can a designer and a programmer work together?

Do our designers need to learn how to program?

XAML https://msdn.microsoft.com/en-us/library/ms752059(v=vs.110).aspx

XAML is a declarative markup language. As applied to the .NET Framework programming model, XAML simplifies
creating a UI for a .NET Framework application. You can create visible UI elements in the declarative XAML
markup, and then separate the UI definition from the run-time logic by using code-behind files, joined to the
markup through partial class definitions.

https://msdn.microsoft.com/en-us/library/ms752059(v=vs.110).aspx

 WPF - sample code (XAML/C#) WPF https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx

public class WPFWindow : Window
{

public MainWindow()

{ InitializeComponent();}

private void ButtonClicked(object sender,
RoutedEventArgs e) {

SubWindow subWindow = new SubWindow();
subWindow.Show();

}

}

Main:

WPFWindow w = new WPFWindow();
w.Show();

<Window x:Class="WPFWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="350" Width="525">

<Grid>
<Button Content="Open Window" Click="ButtonClicked" Height="25" HorizontalAlignment="Left"

Margin="379,264,0,0" Name="button1" VerticalAlignment="Top" Width="100" />
</Grid>

</Window>

Event handling

https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx

Creating WPF application in visual studio and blend https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx

Windows Presentation Foundation (WPF) in Visual Studio 2015 provides developers with a unified programming model for building
modern line-of-business desktop applications on Windows.

Blend helps you design top-notch UI look and feel.

https://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx

Data Binding https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx

Windows Presentation Foundation (WPF) data binding provides a simple and consistent way for applications to
present and interact with data. Elements can be bound to data from a variety of data sources in the form of
common language runtime (CLR) objects and XML.

https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx

Data Binding https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx

OneWay binding causes changes to the source property to automatically update the target property, but changes to the target
property are not propagated back to the source property. This type of binding is appropriate if the control being bound is implicitly
read-only. For instance, you may bind to a source such as a stock ticker or perhaps your target property has no control interface
provided for making changes, such as a data-bound background color of a table. If there is no need to monitor the changes of the
target property, using the OneWay binding mode avoids the overhead of the TwoWaybinding mode.

https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx

Data Binding https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx

TwoWay binding causes changes to either the source property or the target property to automatically update the other. This type of
binding is appropriate for editable forms or other fully-interactive UI scenarios. Most properties default toOneWay binding, but some
dependency properties (typically properties of user-editable controls such as the Text property of TextBox and the IsChecked property
of CheckBox) default to TwoWay binding. A programmatic way to determine whether a dependency property binds one-way or
two-way by default is to get the property metadata of the property using GetMetadata and then check the Boolean value of the
BindsTwoWayByDefault property.

https://msdn.microsoft.com/en-us/library/ms750612(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.textbox.text(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.textbox(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.primitives.togglebutton.ischecked(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.checkbox(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.data.bindingmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms597487(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.frameworkpropertymetadata.bindstwowaybydefault(v=vs.110).aspx

Data Binding: How TO

https://blogs.msdn.microsoft.com/jerrynixon/2012/10/12/xaml-binding-basics-101/

https://blogs.msdn.microsoft.com/jerrynixon/2012/10/12/xaml-binding-basics-101/

2D Graphics https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx

● WPF provides both Drawing and Shape objects to represent graphical drawing content.
● Drawing objects are simpler constructs than Shape objects and provide better performance characteristics.
● A Shape allows you to draw a graphical shape to the screen. Because they are derived from the FrameworkElement class,

Shape objects can be used inside panels and most controls.

https://www.tutorialspoint.com/wpf/wpf_2d_graphics.htm

https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.drawing(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.shapes.shape(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.media.drawing(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.shapes.shape(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.shapes.shape(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.frameworkelement(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.shapes.shape(v=vs.110).aspx
https://www.tutorialspoint.com/wpf/wpf_2d_graphics.htm

2D Graphics - Sample C# code https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx

 public static void Main()
{
 var app = new Application();
 var window = new Window();
 var canvas = new Canvas();

 window.Content = canvas;
 canvas.Children.Add(new Line
 {
 X1 = 0,
 Y1 = 0,
 X2 = 400,
 Y2 = 400,
 Stroke = Brushes.Black
 });
 canvas.Children.Add(new Line
 {
 X1 = 0,
 Y1 = 400,
 X2 = 400,
 Y2 = 0,
 Stroke = Brushes.Black
 });

 app.Run(window);
}

System.Windows.Shapes.Line

https://msdn.microsoft.com/en-us/library/bb613591(v=vs.110).aspx

 Walkthrough: My First WPF Desktop Application https://msdn.microsoft.com/en-us/library/ms752299(v=vs.110).aspx

● Defining XAML to design the appearance of the application's user interface (UI).
● Writing code to build the application's behavior.
● Creating an application definition to manage the application.
● Adding controls and creating the layout to compose the application UI.
● Creating styles to create a consistent appearance throughout an application's UI.
● Binding the UI to data to both populate the UI from data and keep the data and UI synchronized.

https://msdn.microsoft.com/en-us/library/ms752299(v=vs.110).aspx

ASP.NET https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx

ASP.NET is a unified Web development model that includes the services necessary for you to build enterprise-class Web
applications with a minimum of coding. ASP.NET is part of the .NET Framework, and when coding ASP.NET applications you have
access to classes in the .NET Framework.

https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx

Three flavors of ASP.NET https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx#wf_mvc_wp

1. Web Forms
2. Web Pages
3. MVC

https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx#wf_mvc_wp

Web Forms https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx#wf_mvc_wp

● Rapid development, WYSIWYG designer-driven (drag-and-drop) development.

● Good choice for developers with not much experience with web development but looking for results.

● An event model that exposes events which you can program like you would program a client application like

WinForms or WPF.

● Server controls that render HTML for you and that you can customize by setting properties and styles.

● A rich assortment of controls for data access and data display.

● Automatic preservation of state (data) between HTTP requests, which makes it easy for a programmer who is

accustomed to client applications to learn how to create applications for the stateless web.

https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx#wf_mvc_wp

Web Pages https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx#wf_mvc_wp

ASP.NET Web Pages targets developers who want a simple web development story, along the lines of PHP. In the

Web Pages model, you create HTML pages and then add server-based code to the page in order to dynamically

control how that markup is rendered.

● Web Pages is specifically designed to be a lightweight framework

● easiest entry point into ASP.NET for people who know HTML but might not have broad programming

experience It's also a good way for web developers who know PHP or similar frameworks to start using

ASP.NET.

https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx#wf_mvc_wp

MVC https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx#wf_mvc_wp
http://criticaltechnology.blogspot.se/2011/09/mvc-in-three-tier-architecture.html

ASP.NET MVC targets developers who are interested in patterns and principles like test-driven development, separation of concerns,

inversion of control (IoC), and dependency injection (DI). This framework encourages separating the business logic layer of a web

application from its presentation layer.

With ASP.NET MVC, you work more directly with HTML and HTTP than in Web Forms. Web Forms tends to hide some of that by

mimicking the way you would program a WinForms or WPF application.

https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx#wf_mvc_wp
http://criticaltechnology.blogspot.se/2011/09/mvc-in-three-tier-architecture.html
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Inversion_of_control
http://en.wikipedia.org/wiki/Dependency_injection

Model View ModelView Pattern https://msdn.microsoft.com/en-us/library/hh848246.aspx

The Model-View-ViewModel pattern can be used on all XAML platforms. Its intent is to provide a clean separation

of concerns between the user interface controls and their logic.

There are three core components in the MVVM pattern: the model, the view, and the view model. Each serves a

distinct and separate role. The following illustration shows the relationships between the three components.

https://msdn.microsoft.com/en-us/library/hh848246.aspx

Thanks for listening!

