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2Path/Motion Planning (1)
 Perhaps the easiest form of path planning / motion planning:

 A robot should move in two dimensions between start and goal

 Avoiding known obstacles – or it would be too easy…

Start position

Goal position
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3Path/Motion Planning (2)
 Problem: Generating an optimal continuous path is hard!

 First step (often): Discretize

▪ Choose a finite number of potential waypoints in the map

▪ Create a graph: Waypoints are nodes, short obstacle-free paths are edges

▪ Use discrete search algorithms to decide which waypoints to use

Start position

Goal position

To do: create nodes / potential waypoints,

generate appropriate edges,

find a path in the resulting graph
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5Regular 2D Grid
 The simplest type of discretization: A regular grid

 Robots only move north, east, south or west

 Assumption:  Can deal with

details (geometry / terrain) later…

Start position

Goal position

Grid = rutnät, the whole thing

Cell = ruta, a single rectangle



6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Regular 2D Grid: Real Obstacles
 Real obstacles do not correspond

to square / rectangular cells…

 But we can cover them with cells

Partially covered – can’t be used

Obstacle

Start position

Goal position
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7Regular 2D Grid: Nodes
 Each cell is associated with a single node

 Corresponding to 2D point

 Could be the center of the 2D cell
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8Regular 2D Grid: Edges
 Which nodes are connected in the discrete graph?

 Let’s simplify in the beginning

▪ Straight lines in 2D space

▪ Through free cells (completely grid-based, no complex geometry!)

▪ 4-connectivity (north, south, west, east)…
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9Regular 2D Grid: More Edges
▪ …or 8-connectivity



Finding a Solution
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11Discrete Graph Search
 Connect start/goal configurations to the nodes in their cells

 Results in a discrete graph search problem
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12A*, Heuristics
 Finding a path: Any graph search algorithm

 For example:  A*

 Heuristics in simple geometric paths: Manhattan distance (4 directions),

Chebyshev distance (moving in 8 directions),

Euclidean distance (in general), …
But there is no solution

for this discretization!
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13Grid Density
 Grid density matters!

 Here: 4 times as many cells

 Better approximation of the true obstacles,

but many more nodes to search
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14Solutions
 Solutions are correct under certain assumptions

 The robot can turn 90° in place,

or all free grid cells provide terrain

where we can actually follow curves
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16Non-Regular Grids
 Alternative to high regular density: Non-regular grids

 For example, denser cells around obstacles
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17Grid Representations
 Space-efficient data structure: quadtree

 Each node keeps track of:

▪ Whether it is completely covered, partially covered or non-covered

 Each non-leaf node has exactly four children
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18Grid Representations
 Can be generalized to 3D (octree), …
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20Non-Grid Placement
 Grid-based methods can result in many nodes

 Even with efficient representation, searching the graph takes time

 Alternative idea: Place nodes depending on obstacles

 Simple case: Known road map

 Model all non-road areas as obstacles,

then add a dense grid?

 Or place a node in each intersection?

If we only know the obstacles (no roads),

where to place the nodes?
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21Visibility Graphs
 Visibility graphs

 Applicable to simple polygons – straight sides without intersections

▪ Nodes at all polygon corners

▪ Edges wherever a pair of nodes can be connected using the local planner

 Mainly interesting in 2D

▪ Optimal in 2D, not in 3D

qinit

qqoal
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22Voronoi Diagrams
 Voronoi diagrams

 Find all points that have the same distance to two or more obstacles

▪ Maximizes clearance (free distance to the nearest obstacle)

 Creates unnecessary detours

 Mainly interesting in 2D –

does not scale well
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24Motion Constraints (1)
 So far, we implicitly assumed:

 If we can draw a line between two waypoints,

the robot can move between the waypoints
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25Motion Constraints (2): Holonomic
 May work if the robot is holonomic

 Informally: Can move in any direction

(possibly by first rotating, then moving)
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26Motion Constraints (3): Non-Holonomic
 But: Can an airplane fly this path? 

 How do we know?  What are the constraints?

We need some new concepts…



Workspace and Configuration Space
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28Workspace (1)
 The workspace is (1) the physical space in which we work…

 3 physical dimensions, 3-dimensional coordinates, 3-dimensional obstacles

▪ Need full 3D geometry to determine how the helicopter can move
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29Workspace (2)
 … or (2) a 2D projection, in case this is sufficient

 For a car:

▪ Can describe position, rotation in 2D

(except tunnels, bridges, …)

▪ Can describe obstacles in 2D

 Workspace can be 2D

▪ Still represents physical locations
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30Configuration Space
 Even a car has 3 physical degrees of freedom (DOF)!

 The configuration space of the car

▪ Location in the plane (𝑥/𝑦),

▪ Angle (𝜃)

 Each DOF is essential!

▪ As part of the goal – park at the correct angle

▪ As part of the solution – must turn the car to get through narrow passages

Motion planning takes place in configuration space:

How do I get from (200, 200, 12°) to (800, 400, 90°)?
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31The Ladder Problem
 The ladder problem is similar

 Move a ladder in a 2D workspace , with 3 physical DOF

 Configuration:

▪ Location in the plane (𝑥/𝑦),

▪ Angle (𝜃) 

 Again, each DOF

is essential:

 As part of the goal

▪ We want the ladder to end up

at a specific angle

 As part of the solution

▪ We need to turn the ladder

to get it past the obstacles
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32The Ladder Problem: Controllable DOF
 For ladders, each physical DOF is directly controllable!

 You can:

▪ Change x (translate sideways)

▪ Change y (translate up/down)

▪ Change angle (rotate in place)

 Therefore:

▪ If you want to get from (200, 200, 12°) to (800, 400, 90°),
any path connecting these 3D points

and going through free configuration space

is sufficient

 The ladder is holonomic!

▪ Controllable DOF >= physical DOF
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33

Not OKOK

Controllable Degrees of Freedom
 Cars have 3 degrees of freedom

 But only move back and forward,

along curves with constrained turning radius

  constrained curves

in configuration space

OK

2.
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34Controllable Degrees of Freedom (2)
 In this parallel parking example:

 There is free space between current and desired configurations

▪ But we can't slide in sideways!

 Fewer controllable DOF than physical DOF!

▪  non-holonomic

▪ Limits possible curves in 3D configuration space!
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35Work Space, Configuration Space
 Summary of important concepts:

 Work space: The physical space in which you move

▪ 3-dimensional for this robot arm

 Configuration space:

The set of possible configurations of the robot

▪ Usually continuous

▪ Often many-dimensional

(one dimension per physical DOF)

▪ Will often be visualized in 2D for clarity

 We have to search 

in the configuration space!

▪ Connect configurations, not waypoints



Local and Global Planners:

Divide and Conquer

in Configuration Space
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37

5 configurations…

Searching the Configuration Space
 Divide and Conquer!

 Local path planner

▪ Determines whether two configurations

can be connected with a path in configuration space, 

and how

▪ Considers vehicle-specific constraints
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38Searching the Configuration Space
 Divide and Conquer!

 High-level path planner

▪ Generates a finite set of configurations

▪ Calls local planner to determine

which configurations can be connected

▪ Uses discrete search to determine a sequence of configurations

to “pass through”

5 configurations…
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39Low-Dimensional Problems
 In low-dimensional problems:

 The high-level planner could select configurations in a grid (”equal distance”)

▪ Car: 3-dim configuration space

▪ Example: 6 locations, 4 angles considered per spatial location, 24 configurations

(0, 0, 0º)

(0, 0, 90º)

(0, 0, 180º)

(0, 0, 270º)

(1, 0, 0º)

(1, 0, 90º)

(1, 0, 180º)

(1, 0, 270º)

(0, 1, 0º)

(0, 1, 90º)

(0, 1, 180º)

(0, 1, 270º)

(1, 1, 0º)

(1, 1, 90º)

(1, 1, 180º)

(1, 1, 270º)

(2, 0, 0º)

(2, 0, 90º)

(2, 0, 180º)

(2, 0, 270º)

(2, 1, 0º)

(2, 1, 90º)

(2, 1, 180º)

(2, 1, 270º)
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40Low-Dimensional Problems (2)
 Let’s illustrate this more graphically…

(0, 0, 0º)

(0, 0, 90º)

(0, 0, 180º)

(0, 0, 270º)

(1, 0, 0º)

(1, 0, 90º)

(1, 0, 180º)

(1, 0, 270º)
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41Local Planner (1)
 Ask local planner: "Can I connect these configurations"?

from to

fr
o
m

to

OK!

OK!

Configurations, not locations or points!

Can I go from here in this direction to there in that direction?

Can I go from these arm joint angles to those arm joint angles?
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42Local Planner (2)
 Ask local planner: "Can I connect these configurations"?

Try to connect red arrows

directly:

The local planner might say

"Sorry, too complex"

from to
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43Local Planner (3): Local vs Global
 Other paths may be possible

The global planner might

be able to connect them

indirectly

through other configurations

Divide and conquer:

Local planner should be fast,

the rest is handled through

the high-level planner

Why not make the local

planner smarter?
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44Local Planner (4)
 Local planner also considers obstacles

Obstacle here 

Local planner says "no"

(Go through other configs

instead of directly)



High-Dimensional Problems
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46High-Dimensional Problems
 For an aircraft, a configuration could consist of:

 location in 3D space (𝑥/𝑦/𝑧)

 pitch angle

 yaw angle

 roll angle

 A path is:

 a continuous curve in 6-dimensional configuration space

avoiding obstacles

and obeying constraints on how the aircraft can turn

▪ Can make tighter turns at low speed

▪ Can’t fly at arbitrary pitch angles

▪ …
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47High-Dimensional Problems (2)
 For a robot arm, a configuration could consist of:

▪ The position / angle of each joint

 A path is a continuous curve in n-dimensional configuration space

(all joints move continuously to new positions, without “jumping”),

avoiding obstacles and obeying constraints on joint endpoints etc.

 Typical goal: Reach inside the car you are painting / welding,

without colliding with the car itself



48

jo
nk

v@
id

a
jo

nk
v@

id
a

48High-Dimensional Problems (3)
 Moving in tight spaces, again…
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49High-Dimensional Problems (4)
 For a humanoid robot, a configuration could consist of:

▪ Position in x/y space

▪ The position of each joint

 The Nao robot:

▪ 14, 21 or 25 degrees of freedom

depending on model

▪ Up to 25-dimensional motion planning!

 Grid methods generally do not scale

▪ 25-dimensional configuration space,

with 1000 cells in each direction:

1075 cells…
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50High-Dimensional Problems (5)
 Honda Asimo: 57 DOF

We can often omit some DOF

from planning…

But then we don't use

the robot's full capabilities!
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51Alpha Puzzle: Narrow Passages
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53Preliminaries: Coverage Domain
 Given a configuration q in the free config space:

 A particular local planner can connect it to a set of other configs

 Called the coverage domain 𝐷 𝑞 – generally an infinite set

Obstacle

Obstacle

D(q)

q

Example: Simple 2D planning,

local planner uses straight lines…

Can connect q to

any config in the green area

Can’t connect q to

any other points
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54Preliminaries: Preprocessing
 Preprocessing: Suppose we can select configurations so that:

 Their domains cover the entire config space

 The configs can be connected

Obstacle

Obstacle
Incomplete

so far…

(Imagine many obstacles, hundreds or thousands of configurations,

many dimensions…)
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55Preliminaries: Solving
 Solving: We get…

 Start configuration 𝑞start
▪ Connect to another configuration

▪ Must be possible:

The domains of the existing configurations covered the entire space

 Goal configuration 𝑞goal

▪ Connect…

 Find a path

through the graph!
Obstacle

Obstacle

S

G
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56Preliminaries: Coverage Domains are Implicit
 Problem: We can’t calculate the coverage domain 𝐷(𝑞)
 Local planner answers ”can you connect 𝑞1 with the specific config 𝑞2?

 Computing ”all the configurations you can connect 𝑞1 to”:

▪ High-dimensional spaces (57D???)

▪ Complex motion constraints,

not just physical obstacles

▪ Too computationally complex,

even if finite

▪ Usually infinitely many possibilities
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57Preliminaries: Probabilistic Methods
 Solution: Probabilistic methods

 Given a set of configurations 𝑄 = {𝑞1, … , 𝑞𝑛}:

▪ Don’t compute

ራ

𝑞∈𝑄

𝐷(𝑞)

▪ Directly compute probability:

𝑃 ራ

𝑞∈𝑄

𝐷 𝑞 covers entire free configuration space

▪ Or:

𝑃 if you pick a random free config, it belongs toራ

𝑞∈𝑄

𝐷 𝑞

▪ Add configurations until probability is sufficiently high



Probabilistic Roadmaps

(Lydia Kavraki et al, 1996)
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59Probabilistic Roadmaps
 Probabilistic Roadmaps (PRM): Construction Phase

 

▪

Obstacle

Obstacle

A new config here

would not be added!

Tweaks:

Only consider points within a 

maximum distance;

only consider up to N neighbors;

…
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60PRM: Sufficient Coverage
 When do you have sufficient coverage?

 Suppose you have tested 𝑛 configurations in a row

without being able to add one to the road map

 Then the roadmap covers the free config space

with probability 1 −
1

n

▪ Example: 𝑛 = 1000 likely that 99.9% of the free config space is covered

 Why generate randomly?  Why don't we select a non-covered config?

 How?  Many dimensions, complex connectivity, …

 Random  no need to explicitly calculate

coverage domains!

 Construction phase done in advance

 In a sense, a learning phase

 Road map reused for many queries

Obstacle

Obstacle
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61PRM: Construction in Advance
 Construction phase typically done in advance

 In a sense, a learning phase

 Road map reused for many queries

 But we can improve the road map later!

 No solution?  Add more nodes.

 Detect new obstacles?  Remove edges.

 …

Obstacle

Obstacle
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62PRM: Node Placement
 Node placement is random but not always uniform

 Can be biased towards difficult areas

The "obstacles" above are "obstacles" in configuration space!
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63PRM: Protein Folding
 (Second example was from a protein folding application…)



64

jo
nk

v@
id

a
jo

nk
v@

id
a

64PRM: Query Phase
 Query Phase:

start

goal

start

goal

Add and connect start and

goal configs to the roadmap

(should be possible, as we

have good coverage)

start

goal

A* search
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65PRM: Result

Visualized i 2D

Could be 25D

Even in 2D, we have no 

closed form description of 

the shape – must sample!

Limit permitted

edge length 

denser map
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66PRM: Properties
 Properties:

 Scales better to higher dimensions

 Deterministically incomplete, probabilistically complete

▪ The more configurations you create,

the greater the probability that a path can be found if one exists

(approaching 1.0)
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68Adapting to New Obstacles
 Suppose new obstacles are detected during execution

 A*: Update map and replan from scratch

▪ Inefficient

 D* (Dynamic A*): Informed incremental search

▪ First, find a path using information about known obstacles

▪ When new obstacles are detected:

▪ Affected nodes are returned to the OPEN list, marked as RAISE:

More expensive than before

▪ Incrementally updates only those nodes whose cost change

due to the new obstacles

 Focused D*:

▪ Focuses propagation towards the robot – additional speedup

 …
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69Anytime Search
 Anytime algorithms:

 Be able to answer whenever I interrupt you!

 In practice: Create some path quickly, then incrementally improve it

 ”Repeated weighted A*” (standard technique)

▪ Run A* with 𝑓 𝑛 = 𝑔 𝑛 +𝑾 ⋅ ℎ(𝑛), where 𝑊 > 1: Faster but suboptimal

▪ Decrease 𝑊 and repeat

▪ But: Has to redo search from scratch in each run!

𝑤 = 1: 

Standard A*

𝑤 = 5: 

Distance 

from goal is 

exaggerated



suboptimal



70

jo
nk

v@
id

a
jo

nk
v@

id
a

70Anytime Search (2)
 Anytime algorithms:

 Anytime Repairing A*

▪ Like ”repeated weighted A*”, but reuses search results from earlier iterations

 Anytime Dynamic A* (AD*)

▪ Both replanning when problems change

and anytime planning

 …
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72Suboptimal Paths
 Paths are often suboptimal in the continuous space

 Only the chosen points in the cells are used

 In this example: The midpoints
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73Smoothing
 Paths can be improved through smoothing after generation

 Still generally does not lead to optimal paths

 This is just a simple example, where smoothing is easy
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74Open Motion Planning Library
 Want to experiment?

 Open Motion Planning Library

 http://ompl.kavrakilab.org/index.html

http://ompl.kavrakilab.org/index.html

