
jonas.kvarnstrom@liu.se – 2019

Automated Planning
Performance:

Planning competitions +
Combining and tuning planners

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3International Planning Competitions
 Started in 1998

 Origin of the Planning Domain Definition Language

 Held irregularly, with different tracks

 Rules have varied somewhat over time

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Sequential Track Rules
 Current rules (approximately):

 Sequential SatisficingTrack:

▪ For each problem instance, spend up to 30 minutes searching

▪ Return the highest quality (lowest cost) solution you found – if you found one

▪ As long as you found it in 30 minutes, speed is irrelevant

 Sequential Optimal Track:

▪ For each problem instance, spend up to 30 minutes searching

▪ Return an optimal solution or none at all

▪ Suboptimal in one domain  score 0 for that domain

▪ Suboptimal in multiple domains  disqualified

 Sequential AgileTrack:

▪ For each problem instance, spend up to 5 minutes searching

▪ Only speed counts: Return the first solution you find

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5IPC Scores: Satisficing
 Scores for satisficing planning:

 Planner C, problem instance p

 score 𝐶, 𝑝 = ቐ
0 𝑖𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑟 𝐶 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑠𝑜𝑙𝑣𝑒 𝑝

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝐶
𝑖𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑟 𝐶 𝑑𝑖𝑑 𝑠𝑜𝑙𝑣𝑒 𝑝

 If the best cost found by any planner is 30,

and you found a plan of cost 40,

your score is 30/40 = 0.75

 Total score = sum of all individual problem instance scores

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6IPC Scores: Optimizing
 Scores for optimizing planning:

 Planner C, problem instance p

 score 𝐶, 𝑝 = ቊ
0 𝑖𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑟 𝐶 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑠𝑜𝑙𝑣𝑒 𝑝
1 𝑖𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑟 𝐶 𝑑𝑖𝑑 𝑠𝑜𝑙𝑣𝑒 𝑝

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8IPC 2008
 International Planning Competition 2008:

 First time that the domains were secret

 First time that the experiments were run by the organizers

 First time the performance scores were clearly defined in advance

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Sequential Satisficing (1)
 Example performance per problem instance: OpenStacks domain

Clear that planners are good at different things

May solve larger instances but not smaller

Problem instance 1, 2, 3, …

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Sequential Satisficing (2)
 Example performance summarized for one domain

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Sequential Satisficing (3)
 Total performance in sequential satisficing

LAMA – counting landmarks,

first Greedy Best First search,

then RepeatedWeighted A*

Suitable for competition: Prioritize

finding something, then try to improve

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12Sequential Optimizing
 Total performance in sequential optimizing

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Parameter Optimization (1)
 Some planners have many parameters to tweak

 In early planning competitions, domains were known in advance

▪ Participants could manually adapt their ”domain-independent” planners…

 Somewhat exaggerated quote from IPC-2008 results:

▪ if domain name begins with “PS” and part after first letter is “SR”:

use algorithm 100

▪ else if there are 5 actions, all with 3 args, and 12 non-ground facts:

use algorithm −1000

▪ else if all facts ground and 10th/11th domain name letters “PA”:

use algorithm −1004

▪ else if there are 11 actions and action name lengths range from 5 to 28:

use algorithm 107

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15Parameter Optimization (2)
 How about automatically learning parameters?

 One specific form of learning in planning – others exist

 Experimental application to Fast Downward

▪ Optimization for speed: 45 params, 2.99 * 1013 possible configurations

▪ Optimization for quality: 77 params, 1.94 * 1026 possible configurations

 Example parameters:

▪ Heuristics used:

hmax = h0, hm, hadd, hFF, hLM (landmarks), hLA (admissible landmarks), goal count, …

▪ Method used to combine heuristics: Max, sum, selective max (learns which

heuristic to use per state), tie-breaking, Pareto-optimal, alternation

▪ Preferred operators used or not, for each heuristic

▪ Like FF's helpful actions, but used for prioritization, not pruning

▪ Search strategy combinations: Eager best-first, lazy best-first, EHC

▪ …

 Parameter learning framework ParamILS used

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16Parameter Optimization (3): Results
 Under the diagonal = faster

than default configuration

 For 540 small

training instances:

▪ Very good results

▪ To be expected – parameters

tuned for these specific instances!

 For 270 larger test instances:

▪ From the same domains

▪ Performance still improves

Unsolvable in 900 seconds

by the default configuration

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Parameter Optimization (4): Results
 Complete results

D
ar

ke
r

=
 b

e
tt

e
r!

Two autotune variations,

adapted to older domains

(a few of which were still used)

Clear winner from 2008,

now outrun by others

Modified LAMA wins!

What’s this? Let’s see…

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20

 Observation:

 Different planners seem good in different domains!

Portfolio Planning (1)

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21

All problems

Solved in 900s by A

Portfolio Planning (2)
 Further analysis would show:

 Even if two planners solve equally many problems in one domain,

they may solve different problems

 Also, planners often return plans quickly or not at all

Solved in 450s by

planner A

All problems

In 900s by B

Solved in 450s

by planner B

All problems

Solved by

running A

for 450s,

then running

B for 450s

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22

All problems

Solved in 900s by A

Portfolio Planning (3)
 Given a fixed time limit:

 Can benefit from splitting this across multiple algorithms!

  Portfolio planning

Solved in 450s

by planner A

All problems

In 900s by B

Solved in 450s

by planner B

All problems

Solved by

running A

for 450s,

then running

B for 450s

Fast Downward Stone Soup

”We’ll cook a soup using only a stone!

…

But of course it’s tastier if you contribute some of this,

and you contribute some of that, and…”

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24FDSS (1)
 Fast Downward Stone Soup (2011): Learning

 Given test examples from earlier domains (2008)

▪ Which configurations to use

▪ How much time to assign to each config

4 of 11

configurations

selected for

sequential optimal

planning

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25FDSS (3)
 For satisficing planning:

 Far more algorithms

and variations

to choose from!

 Lack of time 

tested a subset…

Results: 2011

http://www.plg.inf.uc3m.es/ipc2011-deterministic/

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29IPC 2011: Optimization
 Results from IPC-2011

 Using new, previously unknown domains

2014

No LAMA

here?

Completely

outdated?

Part of many portfolios,

including the two

winners…

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34IBaCoP 2014
 IBaCoP: Instance-Based Configured Portfolios

 #1 and #2 in the Sequential SatisficingTrack 2014

 based on:

▪ ARVAND (Nakhost, Valenzano, and Xie 2011)

▪ FD-AUTOTUNE 1 & 2 (Fawcett et al. 2011)

▪ FD STONE SOUP (FDSS) 1 & 2 (Helmert et al. 2011)

▪ LAMA 2008 & 2011 (Richter, Westphal, and Helmert2011)

▪ PROBE (Lipovetzky and Geffner 2011)

▪ MADAGASCAR (Rintanen 2011)

▪ RANDWARD (Olsen and Bryce 2011)

▪ YAHSP2-MT (Vidal 2011)

▪ LPG-TD (Gerevini et al. 2004)

2018

https://ipc2018-classical.bitbucket.io/

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Results: Satisficing, IPC 2018

2014: #1-2

2014: #3

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Results: Satisficing, IPC 2018

!!!

Portfolio

New strategy!

Portfolio

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Fast Downward Stone Soup 2018
 FDSS update 2018:

 144 Fast Downward configurations to choose from

▪ Trained using problems from IPC 1998-2014 + other sources

 Result:

▪ Portfolio uses 41 configurations, between 8 and 135 seconds

▪ Overall score 1999.93, compared to best component 1650.40

(running on non-training problems

