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3International Planning Competitions
 Started in 1998

 Origin of the Planning Domain Definition Language

 Held irregularly, with different tracks

 Rules have varied somewhat over time
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4Sequential Track Rules
 Current rules (approximately):

 Sequential SatisficingTrack:

▪ For each problem instance, spend up to 30 minutes searching

▪ Return the highest quality (lowest cost) solution you found – if you found one

▪ As long as you found it in 30 minutes, speed is irrelevant

 Sequential Optimal Track:

▪ For each problem instance, spend up to 30 minutes searching

▪ Return an optimal solution or none at all

▪ Suboptimal in one domain  score 0 for that domain

▪ Suboptimal in multiple domains  disqualified

 Sequential AgileTrack:

▪ For each problem instance, spend up to 5 minutes searching

▪ Only speed counts: Return the first solution you find
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5IPC Scores: Satisficing
 Scores for satisficing planning:

 Planner C, problem instance p

 score 𝐶, 𝑝 = ቐ
0 𝑖𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑟 𝐶 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑠𝑜𝑙𝑣𝑒 𝑝

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝐶
𝑖𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑟 𝐶 𝑑𝑖𝑑 𝑠𝑜𝑙𝑣𝑒 𝑝

 If the best cost found by any planner is 30,

and you found a plan of cost 40,

your score is 30/40 = 0.75

 Total score = sum of all individual problem instance scores
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6IPC Scores: Optimizing
 Scores for optimizing planning:

 Planner C, problem instance p

 score 𝐶, 𝑝 = ቊ
0 𝑖𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑟 𝐶 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑠𝑜𝑙𝑣𝑒 𝑝
1 𝑖𝑓 𝑝𝑙𝑎𝑛𝑛𝑒𝑟 𝐶 𝑑𝑖𝑑 𝑠𝑜𝑙𝑣𝑒 𝑝
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8IPC 2008
 International Planning Competition 2008:

 First time that the domains were secret

 First time that the experiments were run by the organizers

 First time the performance scores were clearly defined in advance
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9Sequential Satisficing (1)
 Example performance per problem instance:  OpenStacks domain

Clear that planners are good at different things

May solve larger instances but not smaller

Problem instance 1, 2, 3, …
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10Sequential Satisficing (2)
 Example performance summarized for one domain
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11Sequential Satisficing (3)
 Total performance in sequential satisficing

LAMA – counting landmarks,

first Greedy Best First search,

then RepeatedWeighted A*

Suitable for competition: Prioritize

finding something, then try to improve
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12Sequential Optimizing
 Total performance in sequential optimizing
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14Parameter Optimization (1)
 Some planners have many parameters to tweak

 In early planning competitions, domains were known in advance

▪ Participants could manually adapt their ”domain-independent” planners…

 Somewhat exaggerated quote from IPC-2008 results:

▪ if domain name begins with “PS” and part after first letter is “SR”:

use algorithm 100

▪ else if there are 5 actions, all with 3 args, and 12 non-ground facts:

use algorithm −1000

▪ else if all facts ground and 10th/11th domain name letters “PA”:

use algorithm −1004

▪ else if there are 11 actions and action name lengths range from 5 to 28:

use algorithm 107
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15Parameter Optimization (2)
 How about automatically learning parameters?

 One specific form of learning in planning – others exist

 Experimental application to Fast Downward

▪ Optimization for speed: 45 params, 2.99 * 1013 possible configurations

▪ Optimization for quality: 77 params, 1.94 * 1026 possible configurations

 Example parameters:

▪ Heuristics used:

hmax = h0, hm, hadd, hFF, hLM (landmarks), hLA (admissible landmarks), goal count, …

▪ Method used to combine heuristics: Max, sum, selective max (learns which 

heuristic to use per state), tie-breaking, Pareto-optimal, alternation

▪ Preferred operators used or not, for each heuristic

▪ Like FF's helpful actions, but used for prioritization, not pruning

▪ Search strategy combinations: Eager best-first, lazy best-first, EHC

▪ …

 Parameter learning framework ParamILS used
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16Parameter Optimization (3): Results
 Under the diagonal = faster

than default configuration

 For 540 small

training instances:

▪ Very good results

▪ To be expected – parameters 

tuned for these specific instances!

 For 270 larger test instances:

▪ From the same domains

▪ Performance still improves

Unsolvable in 900 seconds

by the default configuration



17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Parameter Optimization (4): Results
 Complete results

D
ar
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r 
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 b

e
tt
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Two autotune variations, 

adapted to older domains

(a few of which were still used)

Clear winner from 2008, 

now outrun by others

Modified LAMA wins!

What’s this?  Let’s see…
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20

 Observation:

 Different planners seem good in different domains!

Portfolio Planning (1)
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All problems

Solved in 900s by A

Portfolio Planning (2)
 Further analysis would show:

 Even if two planners solve equally many problems in one domain,

they may solve different problems

 Also, planners often return plans quickly or not at all

Solved in 450s by 

planner A

All problems

In 900s by B

Solved in 450s 

by planner B

All problems

Solved by

running A

for 450s,

then running

B for 450s
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22

All problems

Solved in 900s by A

Portfolio Planning (3)
 Given a fixed time limit:

 Can benefit from splitting this across multiple algorithms!

  Portfolio planning

Solved in 450s 

by planner A

All problems

In 900s by B

Solved in 450s 

by planner B

All problems

Solved by

running A

for 450s,

then running

B for 450s



Fast Downward Stone Soup

”We’ll cook a soup using only a stone!

…

But of course it’s tastier if you contribute some of this,

and you contribute some of that, and…”
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24FDSS (1)
 Fast Downward Stone Soup (2011): Learning

 Given test examples from earlier domains (2008)

▪ Which configurations to use

▪ How much time to assign to each config

4 of 11 

configurations

selected for 

sequential optimal

planning
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25FDSS (3)
 For satisficing planning:

 Far more algorithms

and variations 

to choose from!

 Lack of time 

tested a subset…







Results: 2011

http://www.plg.inf.uc3m.es/ipc2011-deterministic/
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29IPC 2011: Optimization
 Results from IPC-2011

 Using new, previously unknown domains





2014





No LAMA 

here?

Completely

outdated?

Part of many portfolios,

including the two

winners…
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34IBaCoP 2014
 IBaCoP:  Instance-Based Configured Portfolios 

 #1 and #2 in the Sequential SatisficingTrack 2014

 based on:

▪ ARVAND (Nakhost, Valenzano, and Xie 2011)

▪ FD-AUTOTUNE 1 & 2  (Fawcett et al. 2011)

▪ FD STONE SOUP (FDSS) 1 & 2 (Helmert et al. 2011)

▪ LAMA 2008 & 2011 (Richter,  Westphal, and Helmert2011)

▪ PROBE (Lipovetzky and Geffner 2011)

▪ MADAGASCAR (Rintanen 2011)

▪ RANDWARD (Olsen and Bryce 2011)

▪ YAHSP2-MT (Vidal 2011)

▪ LPG-TD (Gerevini et al. 2004)



2018

https://ipc2018-classical.bitbucket.io/
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36Results: Satisficing, IPC 2018

2014: #1-2

2014: #3
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37Results: Satisficing, IPC 2018

!!!

Portfolio

New strategy!

Portfolio
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38Fast Downward Stone Soup 2018
 FDSS update 2018:

 144 Fast Downward configurations to choose from

▪ Trained using problems from IPC 1998-2014 + other sources

 Result: 

▪ Portfolio uses 41 configurations, between 8 and 135 seconds

▪ Overall score 1999.93, compared to best component 1650.40

(running on non-training problems


