
jonas.kvarnstrom@liu.se – 2019

Automated Planning

Tweaking Search Strategies

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2Baseline
 Baseline: General Search-Based Planning Algorithm:





≠ ∅


∈

Initialization

Selection

Solution

check

Node

expansion

Typically computes

ℎ 𝑛𝑒𝑤𝑛𝑜𝑑𝑒
to place newnode correctly

in open

Typically computes

ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑛𝑜𝑑𝑒

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Running Example
 Recall the example from Relaxed Planning Graph Heuristics

 Prepare and serve a surprise dinner,

take out the garbage,

and make sure the present is wrapped before waking your sweetheart!



 

 



5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Search Tree
 Let’s do heuristic forward state space search with ℎ𝐹𝐹…

 First step: Compute ℎ𝐹𝐹(𝑠0)

 Does not satisfy the goal

▪ Let’s create successors

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Search Tree
 Beginning of search tree:

 5 applicable actions

 5 successors
 

 



𝑠1 𝑠2 𝑠3 𝑠4

Are all successors equally likely to be ”useful”?

𝑠5

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7Relaxed Planning Graph Heuristics
 What did we do when we computed ℎ𝐹𝐹(𝑠0)?
 Construct a relaxed planning graph starting in s

 Extract a relaxed plan (sufficient for achieving the goal in the relaxed problem)

 ℎ𝐹𝐹(𝑠) = the cost of the relaxed plan

Example: There are other plans

that could be generated!

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Action Level 1
 Consider the actions selected at action level 1

 Might be more likely to be useful as first actions…

▪ Were useful in the relaxed problem, where you found a complete relaxed plan!

  First action cook?

 No, too restrictive

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Action Level 1
 Consider the actions selected at action level 1

 Then consider all alternative actions that could achieve the same facts

 𝐻 𝑠 = 𝑜 𝑝𝑟𝑒 𝑜 ⊆ 𝑠 ∧ 𝑒𝑓𝑓𝑒𝑐𝑡𝑠+ 𝑜 ∩ 𝑃𝑟𝑜𝑝𝐿𝑒𝑣𝑒𝑙1 ≠ ∅
=

 Called helpful actions or (later) preferred operators

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Search Tree
 New Beginning of search tree:

 2 applicable actions

 2 successors
 

 



𝑠1 𝑠2 𝑠3 𝑠4

Generated…

But not guaranteed to be

useful in practice

𝑠5

Not generated at all!

Though not guaranteed

to be useless…

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11FF: EHC with Helpful Action Pruning
 EHC with helpful actions:











Incomplete

if there are dead ends!

Actions not in H(s)

may be required;

not detected due to

relaxation…

If EHC fails,

FF falls back on

best-first search

using f(s)=hFF(s)

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Helpful Actions and Completeness
 Using helpful actions for pruning leads to incompleteness

 May search for a long time,

exhaust the search space,

then start over using complete search

 ”Helpful actions” are more likely to be helpful

 But skipping the other actions completely is too strict!

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Pruning vs Prioritization
 Fast Downward: Prioritize helpful actions

 Successors created by helpful actions in H(s) (called preferred operators)

are preferred successors

 Successors created by other actions are ordinary successors

s1 s2 s3 s4 s5 s6 s7

s0

Generally

much fewer!

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15Dual Queues (1)
 Fast Downward introduced dual queues (two ”open lists”)

 One for states generated as preferred successors

 One for the ordinary states

”Ordinary”

Preferred

s299 s95 s42 s102 s150

s522 s293 s7 s222 s856

Priority queues!

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16

”Ordinary”

Preferred

Dual Queues (2)
 To expand a state:

 Pick the best state from the preferred queue, and expand it

 Pick the best state from the ordinary queue, and expand it

s95 s42 s102 s150

s522
s293 s7 s222 s856

s299

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17

”Ordinary”

Preferred

Dual Queues (3)
 After expansion:

 Place all new states where they belong

s95 s42 s102 s150

s522
s293 s7 s222 s856

s299

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18

”Ordinary”

Preferred

Dual Queues (4)
 Fewer states are preferred

 Reached more quickly in the queue

 If we ”misclassified” an action as non-helpful:

 Don’t have to exhaust

the ”preferred part”

of the search space

before we can ”recover”

 Search is complete

s95 s42 s102 s150

s293 s7 s222 s856

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Boosted Dual Queues
 Boosted Dual Queues:

 Used in later versions of Fast Downward and LAMA

 Whenever progress is made (better h-value reached):

▪ Choose 1000 times

from the preferred queue

▪ (Each chosen state

is expanded as usual,

modifying both queues…

Then you pick again)

 If progress is made again within these 1000 successors:

▪ Add another 1000, accumulating

▪ (Progress made after 300  keep expanding 1700 more)

”Ordinary”

Preferred

s95 s42 s102 s150

s293 s7 s222 s856

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Boosted Dual Queues
 Boosted Dual Queues:

 After reaching the preferred successor limit:

▪ Expand a single node from the non-preferred queue

 Still complete

▪ More aggressive than ordinary dual queues

▪ Less aggressive than pure pruning

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Deferred Evaluation
 Standard best-first search:

 Remove the "best" (most promising) state from the open list / priority queue

 Check whether it satisfies the goal

 Generate all successors

 Calculate their heuristic values

 Place in priority queue(s)

Typically takes most of the time

s299

Queue

s95 s42 s102 s150

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Deferred Evaluation (2)
 Potentially faster: Deferred Evaluation (Fast Downward, …)

 Remove the "best" state from the priority queue

 Check whether it satisfies the goal

 Calculate its heuristic value (only one!)

 Generate all successors

 Place in priority queue using the parent's heuristic value

Takes less time, but less accurate heuristic – "one step behind"

Often faster but lower-quality plans

