é& Linkbping University !
Automated Planning

Tweaking Search Strategies

Jonas Kvarnstrom

Department of Computer and Information Science

Linkoping University

Baseline

9
jonkv@ida

Baseline: General Search-Based Planning Algorithm:

search(problem) {

initial-node € make-initial-node(problem) // |2

open € { initial-node } Typically computes
while (open # 0) { h(initial — node)
node € search-strategy-remove-from(open) // [6]

Solution if is-solution(node) then // [4]
check return extract-plan-from(node) // [5]
foreach newnode € successors(node) { // [3] Typically computes

NOd? add newnode to open h(newnode)
expansion } to place newnode correctly

} in open

Initialization

// Expanded the entire search space without finding a solution
return failure;

“Helpful Actions™ in FF

Running Example

jonkv@ida

Recall the example from Relaxed Planning Graph Heuristics

Prepare and serve a surprise dinner,
take out the garbage,
and make sure the present is wrapped before waking your sweetheart!

s = {clean, garbage, asleep}

g ={clean, —garbage, served, wrapped}

Action Preconds

Effects

cook() clean
serve() dinner
wrap() asleep
carry() garbage
roll() garbage

clean() —clean

buy() -

dinner

served

wrapped
—garbage, —clean
—garbage, —asleep

clean

Search Tree

9
jonkv@ida

Let’s do heuristic forward state space search with hgf...
First step: Compute hpr(Sg)

so= iclean, garbage, asleep}

Does not satisfy the goal

= Let’s create successors

Search Tree

Action Preconds Effects

Beginning of search tree:

cook() clean dinner
5 applicable actions serve() dinner served
5 successors wrap() asleep wrapped

carry() garbage —garbage, —clean

roll() garbage —garbage, —asleep

—clean clean
s = iclean, garbage, asleep} - dinner

Are all successors equally likely to be ’useful’?

jonkv@ida

3
jonkv@ida

Relaxed Planning Graph Heuristics

What did we do when we computed hpr(sg)!?

Construct a relaxed planning graph starting in s
Extract a relaxed plan (sufficient for achieving the goal in the relaxed problem)
hrr(s) = the cost of the relaxed plan

Proposition g Proposition G Proposition
level 0 level 1 level 2

garbage garbage garbage
clean clean
clean
asleep asleep —— asleep
buy buy :
dinner — dinner

wrap

Example: There are other plans
that could be generated! wrapped

served

wrapped

Action Level 1

jonkv@ida

Consider the actions selected at action level |

Might be more likely to be useful as first actions...

= Were useful in the relaxed problem, where you found a complete relaxed plan!

=» First action cook?

No, too restrictive

Proposition Proposition Proposition
level 0 | Jevel1 level 1 | level2 level 2

garbage garbage ———— garbage
clean . clean
clean
asleep . asleep ———— asleep
buy buy
dinner > dinner

wrap \
wrapped

wrapped

Action Level 1

jonkv@ida

Consider the actions selected at action level |

Then consider all alternative actions that could achieve the same facts

H(s) = {o|pre(o) S s Aeffects*(0) N PropLevell + @}
= {cook, buy}

Called helpful actions or (later) preferred operators

Proposition Proposition Proposition
level 0 | level1 level 1 | level2 level 2

garbage garbage ———— garbage
clean . clean
clean
asleep . asleep ———— asleep
buy buy ~~
dinner — dinner

wrap \
wrapped

wrapped

Search Tree

é)
jonkv@ida

Action Preconds Effects

New Beginning of search tree:

cook() clean dinner
2 applicable actions serve() dinner served
2 SUCCesSOrs wrap() asleep wrapped

carry() garbage —garbage, —clean
roll() garbage —garbage, —asleep
s = {clean, garbage, asleep} cdean() —clean S

buy() — dinner

Generated... Not generated at all!

But not guaranteed to be Though not guaranteed
useful in practice to be useless...

FF: EHC with Helpful Action Pruning

EHC with helpful actions:

jonkv@ida

EHC(initial state I, goal G)
plan < EMPTY

) P Incomplete
if th dead ends!
while h,(s) I= 0 do if there are dead ends
execute breadth first search from s, Actions not in H(s)
using only helpful actions, may be required;
to find the first s’ such that hgp(s') < hggp(s) not detected due to
relaxation...
if no such state is found then fail
plan € plan + actions on the path to s'
< If EHC fails,
end while FF falls back on
| return plan best-first search

using f(s)=hge(s)
The state space definition of successors(node)

is tweaked to only generate successors using actions in H(node)

Dual Queue Techniques

a
jonkv@ida

Helpful Actions and Completeness

Using helpful actions for pruning leads to incompleteness

May search for a long time,
exhaust the search space,
then start over using complete search

"Helpful actions” are more likely to be helpful

But skipping the other actions completely is too strict!

Pruning vs Prioritization

3
jonkv@ida

Fast Downward: Prioritize helpful actions

Successors created by helpful actions in H(s) (called preferred operators)
are preferred successors

Successors created by other actions are ordinary successors

B BRI

Generally
much fewer!

jonkv@ida

Dual Queues (1)

Fast Downward introduced dual queues (two “open lists”)

One for states generated as preferred successors

One for the ordinary states

Preferred

”Ordinary”’

Priority queues!

3
jonkv@ida

Dual Queues (2)

To expand a state:

Pick the best state from the preferred queue, and expand it

Pick the best state from the ordinary queue, and expand it

Preferred

”Ordinary”’

s222 s856

3
jonkv@ida

Dual Queues (3)

After expansion:

Place all new states where they belong

/\

Preferred
, , s42 | s102 | sI50
|

”Ordinary”’

—

[18 JE

Dual Queues (4)

Fewer states are preferred

Reached more quickly in the queue

If we "misclassified” an action as non-helpful:

Don’t have to exhaust Preferred
the "preferred part”

of the search space
before we can "recover”

Search is complete

”Ordinary”’

Boosted Dual Queues

[19)

jonkv@ida

Boosted Dual Queues:

Used in later versions of Fast Downward and LAMA

Whenever progress is made (better h-value reached):

= Choose 1000 times

from the preferred queue Preferred

= (Each chosen state
is expanded as usual,
modifying both queues...
Then you pick again)

E

”Ordinary”’

If progress is made again within these 1000 successors:
= Add another 1000, accumulating
= (Progress made after 300 =» keep expanding 1700 more)

NY
9
jonkv@ida

Boosted Dual Queues

Boosted Dual Queues:

After reaching the preferred successor limit:

= Expand a single node from the non-preferred queue

Still complete
= More aggressive than ordinary dual queues

= Less aggressive than pure pruning

Deferred Evaluation / Lazy Search

Deferred Evaluation

D
NY
jonkv@ida

Standard best-first search:

Remove the "best" (most promising) state from the open list / priority queue

Check whether it satisfies the goal

Generate all successors 99
Calculate their heuristic values A'

Place in priority queue(s) EBE EHeaEEN

$
Queue

Typically takes most of the time 95 | s | s102 | sis0

[23 0F

Deferred Evaluation (2)

Potentially faster: Deferred Evaluation (Fast Downward,...)

Remove the "best" state from the priority queue

Check whether it satisfies the goal

Calculate its heuristic value (only one!)

Generate all successors
Place in priority queue using the parent's heuristic value

Takes less time, but less accurate heuristic — "one step behind"

Often faster but lower-quality plans

