
jonas.kvarnstrom@liu.se – 2019

Automated Planning

Tweaking Search Strategies

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2Baseline
 Baseline: General Search-Based Planning Algorithm:

≠ ∅

∈

Initialization

Selection

Solution

check

Node

expansion

Typically computes

ℎ 𝑛𝑒𝑤𝑛𝑜𝑑𝑒
to place newnode correctly

in open

Typically computes

ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑛𝑜𝑑𝑒

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Running Example
 Recall the example from Relaxed Planning Graph Heuristics

 Prepare and serve a surprise dinner,

take out the garbage,

and make sure the present is wrapped before waking your sweetheart!

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Search Tree
 Let’s do heuristic forward state space search with ℎ𝐹𝐹…

 First step: Compute ℎ𝐹𝐹(𝑠0)

 Does not satisfy the goal

▪ Let’s create successors

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Search Tree
 Beginning of search tree:

 5 applicable actions

 5 successors

𝑠1 𝑠2 𝑠3 𝑠4

Are all successors equally likely to be ”useful”?

𝑠5

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7Relaxed Planning Graph Heuristics
 What did we do when we computed ℎ𝐹𝐹(𝑠0)?
 Construct a relaxed planning graph starting in s

 Extract a relaxed plan (sufficient for achieving the goal in the relaxed problem)

 ℎ𝐹𝐹(𝑠) = the cost of the relaxed plan

Example: There are other plans

that could be generated!

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Action Level 1
 Consider the actions selected at action level 1

 Might be more likely to be useful as first actions…

▪ Were useful in the relaxed problem, where you found a complete relaxed plan!

 First action cook?

 No, too restrictive

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Action Level 1
 Consider the actions selected at action level 1

 Then consider all alternative actions that could achieve the same facts

 𝐻 𝑠 = 𝑜 𝑝𝑟𝑒 𝑜 ⊆ 𝑠 ∧ 𝑒𝑓𝑓𝑒𝑐𝑡𝑠+ 𝑜 ∩ 𝑃𝑟𝑜𝑝𝐿𝑒𝑣𝑒𝑙1 ≠ ∅
=

 Called helpful actions or (later) preferred operators

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Search Tree
 New Beginning of search tree:

 2 applicable actions

 2 successors

𝑠1 𝑠2 𝑠3 𝑠4

Generated…

But not guaranteed to be

useful in practice

𝑠5

Not generated at all!

Though not guaranteed

to be useless…

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11FF: EHC with Helpful Action Pruning
 EHC with helpful actions:

Incomplete

if there are dead ends!

Actions not in H(s)

may be required;

not detected due to

relaxation…

If EHC fails,

FF falls back on

best-first search

using f(s)=hFF(s)

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Helpful Actions and Completeness
 Using helpful actions for pruning leads to incompleteness

 May search for a long time,

exhaust the search space,

then start over using complete search

 ”Helpful actions” are more likely to be helpful

 But skipping the other actions completely is too strict!

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Pruning vs Prioritization
 Fast Downward: Prioritize helpful actions

 Successors created by helpful actions in H(s) (called preferred operators)

are preferred successors

 Successors created by other actions are ordinary successors

s1 s2 s3 s4 s5 s6 s7

s0

Generally

much fewer!

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15Dual Queues (1)
 Fast Downward introduced dual queues (two ”open lists”)

 One for states generated as preferred successors

 One for the ordinary states

”Ordinary”

Preferred

s299 s95 s42 s102 s150

s522 s293 s7 s222 s856

Priority queues!

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16

”Ordinary”

Preferred

Dual Queues (2)
 To expand a state:

 Pick the best state from the preferred queue, and expand it

 Pick the best state from the ordinary queue, and expand it

s95 s42 s102 s150

s522
s293 s7 s222 s856

s299

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17

”Ordinary”

Preferred

Dual Queues (3)
 After expansion:

 Place all new states where they belong

s95 s42 s102 s150

s522
s293 s7 s222 s856

s299

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18

”Ordinary”

Preferred

Dual Queues (4)
 Fewer states are preferred

 Reached more quickly in the queue

 If we ”misclassified” an action as non-helpful:

 Don’t have to exhaust

the ”preferred part”

of the search space

before we can ”recover”

 Search is complete

s95 s42 s102 s150

s293 s7 s222 s856

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Boosted Dual Queues
 Boosted Dual Queues:

 Used in later versions of Fast Downward and LAMA

 Whenever progress is made (better h-value reached):

▪ Choose 1000 times

from the preferred queue

▪ (Each chosen state

is expanded as usual,

modifying both queues…

Then you pick again)

 If progress is made again within these 1000 successors:

▪ Add another 1000, accumulating

▪ (Progress made after 300 keep expanding 1700 more)

”Ordinary”

Preferred

s95 s42 s102 s150

s293 s7 s222 s856

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Boosted Dual Queues
 Boosted Dual Queues:

 After reaching the preferred successor limit:

▪ Expand a single node from the non-preferred queue

 Still complete

▪ More aggressive than ordinary dual queues

▪ Less aggressive than pure pruning

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Deferred Evaluation
 Standard best-first search:

 Remove the "best" (most promising) state from the open list / priority queue

 Check whether it satisfies the goal

 Generate all successors

 Calculate their heuristic values

 Place in priority queue(s)

Typically takes most of the time

s299

Queue

s95 s42 s102 s150

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Deferred Evaluation (2)
 Potentially faster: Deferred Evaluation (Fast Downward, …)

 Remove the "best" state from the priority queue

 Check whether it satisfies the goal

 Calculate its heuristic value (only one!)

 Generate all successors

 Place in priority queue using the parent's heuristic value

Takes less time, but less accurate heuristic – "one step behind"

Often faster but lower-quality plans

