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2PDB 1: Introduction
 First main idea behind pattern databases:

 Let’s care about a few facts and ignore all others – everywhere

▪ Goals, preconditions, effects, states

A form of relaxation…

With some special features

(later!)
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3PDB 2: Dock Worker Robots
 Example from Dock Worker Robots

 Could choose to care about container locations

▪

 Ignore robot locations, crane locations,

location adjacency, …

pile1
c1
c3

pile2

c2

loc1
r1

loc2

Ordinary state in problem P,

all facts included

Abstract state in P’, 

representing

many states in P

with different

robot locations, …

States are

”grouped together”!
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4PDB 3: Planning in Patterns
 In P’ we (pretend that we) can use the crane at to:

▪ pick up (should be possible)

▪ place something on (too far away, but we don’t care)

▪ place five containers on a single truck

 But we can’t:

▪ pick up (we do care about pile ordering)

▪ immediately place below

p1

p2

loc1
r1

loc2

New paths

to the goal!



Let’s formalize!
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6BW4: Achievable States
 Consider physically achievable states in the blocks world, size 4:
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7BW4: Ground Atoms
 All ground atoms (facts) in this problem instance:


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8BW4: A Pattern
 Example: only consider 5 ground facts related to block A







An "abstract 

state"

An "abstract 

goal"
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9BW4: Transformed Actions




▪ Before transformation:

▪ After transformation:



▪ Before transformation:

▪ After transformation:



Let’s call this action

𝑎 ∩ 𝑝
(not a set, but ”restricted to p”)
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10PDB Heuristics: Patterns, Abstract States
 Given a pattern (set of ground facts) 𝑝

 A state 𝑠 is represented by the abstract state 𝑠 ∩ 𝑝

≈ ≈

represented

by a single

abstract

state

≈ ≈

represented

by a single

abstract

state
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11BW4: Smaller State Transition Graph
 Reachable state transition graph for the given pattern:

 Current state: Everything on the table, hand empty, all blocks clear

▪ Abstract state: s0 = 

Note: Redundant edges

are omitted for clarity

(multiple actions with the same effect)



Relaxation!
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13Relaxation! (1)
 Why is this a relaxation?

 Step 1: In 𝑠, we can execute 𝑎𝑖  In 𝑠 ∩ 𝑝, we can execute a𝑖 ∩ 𝑝

𝑠
contains precond(𝑎𝑖)

𝑠 ∩ 𝑝
contains 

precond(𝑎𝑖 ∩ 𝑝)
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14Relaxation! (2)
 Relaxation 2:

 If 𝛾′ is the state transition function for transformed actions/states, then:

𝛾′ 𝑠 ∩ 𝑝, 𝑎𝑖 ∩ 𝑝 = 𝛾 𝑠, 𝑎𝑖 ∩ p

So:  Executable action sequences are preserved

𝑠
𝑠 ∩ 𝑝

𝛾 𝑠, 𝑎𝑖 𝛾′ 𝑠 ∩ 𝑝, 𝑎𝑖 ∩ 𝑝

∩ 𝑝 =

∩ 𝑝 =

𝑎𝑖 ∩ 𝑝𝑎𝑖
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15Relaxation! (3)
 Relaxation 3:

 If 𝑔 ⊆ 𝑠, then 𝑔 ∩ p ⊆ 𝑠 ∩ p

 So: Solutions are preserved (but new solutions may arise)

𝑠
contains g

𝑠 ∩ 𝑝
contains

𝑔 ∩ 𝑝
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17PDB Heuristics: State Variables
 For PDB heuristics, a state variable representation is useful

 Typically:

▪ Reduces the number of facts

▪ Provides more information about which states are actually reachable!

 Model problems using the state variable representation,

or let planners convert automatically from predicate representation
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18PDB Heuristics: State Variables (2)
 Repetition:  Blocks world with 4 blocks

 states (reachable and unreachable)

in the standard predicate representation

 But in all 125 states reachable from "all-on-table" (all "normal" states):

▪ Block A satisfies exactly one of the following:

▪ – Held in the gripper

▪ – At the top of a tower

▪ – Below B

▪ – Below C

▪ – Below D

▪  Remove those facts, introduce state variable
∈



19

jo
nk

v@
id

a
jo

nk
v@

id
a

19PDB Heuristics: State Variables (3)
 Example, continued

 states (reachable and unreachable) in predicate representation

 states (reachable and unreachable) in state variable representation:

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

▪ ∈

The state variable translation

is not part of the PDB heuristic!

Using state variables is useful

because PDBs work better

with fewer ”irrelevant states”

in the state space…

Allows structure to remain in the abstract search space:

Preserves the fact that A can't be under B and under C 

Also useful when choosing facts: Ignore where A is, care about where B is
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20PDB Heuristics: Rewriting the Problem
 Rewriting works as before

 Suppose the pattern is 

 Rewrite the goal

▪ Original:

▪ Abstract:

 Rewrite actions, removing some preconds / effects

▪ no longer requires

▪ still requires

 …

aboveA ∈ { nothing, B, C, D, gripper }
aboveB ∈ { nothing, A, C, D, gripper }
aboveC ∈ { nothing, A, B, D, gripper }
aboveD ∈ { nothing, A, B, C, gripper }
posA ∈ { on-table, other }
posB ∈ { on-table, other }
posC ∈ { on-table, other }
posD ∈ { on-table, other }
hand ∈ { empty, full }
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21PDB Heuristics: State Space Size
 Abstract states reachable from "all on table", by pattern p…

Immediately

unstack(A,B):  

Don’t care if

aboveB=A
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22PDB Heuristics: State Space Size (2)
 For 6 blocks, originally 7057 reachable states

 Pattern  48 reachable states
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24

abstract goal states

PDB Computation: Main Idea
 To calculate ℎ(𝑠) for a new state 𝑠:

 Example: 6 blocks, pattern

 Convert 𝑠 to abstract state:

 Find optimal path to abstract goal state – in a much smaller search space

▪ Current abstract state is 𝑠2:

aboveA=B,

posA=on-table, 

aboveB=nothing, …

aboveA=B

posA=on-table
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25Tweak 1: Caching
 Because we keep few state variables:

 Many real states map to the same abstract state

 An abstract state may be encountered many times during search

  Cache calculated costs
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26Tweak 2: Databases!
 Dijkstra efficiently finds optimal paths from all abstract states

  Precalculate all heuristic values for each pattern

 Store in a look-up table – a database

Second main idea!



Database Creation
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28Preprocessing (1)
 Preprocessing step 1 (6 blocks, pattern )

 Create the initial abstract state…
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29Preprocessing (2)
 Preprocessing step 2

 Find all reachable abstract states

▪ Start in the abstract initial state (s0 below)

▪ Apply all applicable actions to all states you find (DFS, BFS, …)

▪ Small, therefore fast
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30Preprocessing (3)
 Step 3:  Which abstract states satisfy the abstract goal?

 Real goal = 

 Abstract goal = 

▪ Satisfied in two of the reachable states
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31Preprocessing (4)
 Preprocessing step 4: Compute the database

 For every abstract state

reachable from the

abstract initial state,

 find a cheapest path

to any abstract goal state
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32Preprocessing (5)
 More efficient computation:

 Start with cost=0 for all abstract goal states

 Search backward from these states – single call to Dijkstra

▪ Queue initialized with multiple nodes/states of cost 0 (s2, s9)

▪ Edges followed backward (in explicitly computed graph, no 𝛾−1 necessary)
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33Preprocessing (6)
 Example:  Priority queue contains <s2/cost=0,s9/cost=0>

 Pick s2

▪ A ”successor” is s0, reached backwards by stack(B,A) of cost 2;

▪ s0 inserted in queue with cost 2

 Priority queue contains <s9/c=0, s0/cost=2>, pick s9

▪ A ”successor” is s8, … Assuming cost(stack/unstack)=2,

cost(pickup/putdown)=1
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34PDB Heuristics: Databases
 Database:

 Stores the cost found by Dijkstra for every abstract state s

▪ Cost is optimal within the relaxed problem

▪ Cost is admissible for the “real” problem

Abstract state Cost
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36PDB Heuristics in Forward Search (1)
 Step 1: Automatically generate a pattern

 A selection of state variables to consider

 Choosing a good pattern is a difficult problem!

▪ Different approaches exist…

 Step 2: Calculate the pattern database

 As already discussed
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37PDB Heuristics in Forward Search (2)
 Step 3: Forward search in the original problem

 For each new successor state 𝑠1, calculate heuristic value ℎ𝑝𝑑𝑏(𝑠1)

▪ Example: 𝑠1

▪ Convert this to an abstract state

▪ Example: 𝑠1
′

▪ Use the database to quickly look up ℎ𝑝𝑑𝑏(𝑠1) = 

the cost of reaching the nearest abstract goal from 𝑠1
′

aboveB = gripper, aboveD = A, posB = other, posD = on-table  cost n1

aboveB = gripper, aboveD = A, posB = other, posD = other  cost n2

…
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39Computation Time (1)
 How close to ℎ∗(𝑛) can an admissible PDB-based heuristic be?

 Wrong question!

▪ A pattern can include all state variables  equal to ℎ∗(𝑛)

Then computing the database takes too much time…

HOW much time?

Dijkstra’s algorithm:

𝑶 𝑬 + 𝑽 log 𝑽
𝑽 = number of 

reachable abstract states

# of reachable abstract: 

Exponential in # of

selected state vars

Exponential in the number of state variables in the pattern…

Possible state variables:  Linear in problem size (length of PDDL file, …)

Select all  PDB computation exponential in problem size
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40Computation Time (2)

We want: Polynomial in the problem size (length of PDDL file, …)

Exponential in the number of state variables in the pattern…

Counteract this:

Select a logarithmic number of state variables – growing as log(problem size)

Using this:

Computation time:  𝑶(𝟐log 𝒑𝒓𝒐𝒃𝒍𝒆𝒎 𝒔𝒊𝒛𝒆), which is polynomial in problem size
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41Asymptotic Accuracy: Single PDB Heuristic
 Assume (as before) an infinite set of problems 𝑃𝑖 𝑖 ≥ 0}

 Assume a strategy for selecting

a single pattern for each problem

▪ So that pattern size grows at most

as 𝑂(log 𝑘) for problem size 𝑘

 What is the best accuracy guarantee any strategy can give?

▪ ℎ(𝑛) ≤ cost of reaching the most expensive subgoal of size 𝑂(log 𝑘)

  For any given single pattern, asymptotic accuracy is 0 in many domains

▪ As before, practical results are usually better!

Subgoal size is not constant but grows with problem size k – good!

But still, log(k) grows much slower than k…

problem size

si
ze

of
p
a
tt

er
n
s
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42PDB Heuristics: Gripper Example
 A common restricted

gripper domain:

 One robot with

two grippers

 Two rooms

 All 𝑛 balls originally in

the first room

 Objective: All balls in

the second room

Compact state variable representation:
∈

∈

2 * 4n states, some unreachable – which ones?

Some possible patterns for 𝐤 ≥ 𝟏 balls:

 4 abstract states

 8 abstract states

 4k abstract states

 4log(k) abstract states



Multiple Patterns:

More information,
Same pattern size
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44BW4: Subproblem 2
 Subproblem 2: Some facts related to B

 Current state: Everything on the table, hand empty, all blocks clear

▪ Abstract state: 

 Goal state:

A on B on C on D

▪ Abstract goal:

 Find a path,
compute its cost
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45BW4: Subproblem 3
 Subproblem 3: Only consider ( facts…

 Not handempty, so can hold

many blocks
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46Improving PDBs
 For each pattern, compute a separate pattern database

 Each such cost is an admissible heuristic

 What is the new level of accuracy?

 Still 0… asymptotically / worst case

 But this can still work well in practice!

What then?  Do we sum the costs?

Possibly in satisficing planning – but would generally not be admissible…

But the maximum of two admissible heuristics is also admissible!

And polynomial time:  k patterns require k computations

Pattern 1, aboveB:

I need stack(A,B), cost 2

Pattern 2, aboveC:

I need stack(B,C), cost 2

Sum:

2+2=4

Could have used buildTower(A,B,C), cost 3

Only detectable if we consider the whole problem



Additive PDB Heuristics
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48Additive PDB Heuristics (1)
 To create admissible heuristics by summing PDB heuristics:

 Each fact should be in at most one pattern

 Each action should affect facts in at most one pattern

  Additive pattern database heuristics
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49

p1 p2

Additive PDB Heuristics (2)
 BW:  Is ={facts in even rows}, ={facts in odd rows} additive?

 No: pickup(B) affects {aboveB,posB} in , {hand} in 

aboveD

posA

pickup(B)

posB

One potential problem:

Both patterns could use pickup(B) in their optimal solutions

 sum counts this twice!  This is what we're trying to avoid…

aboveB

posD

aboveC

aboveA

hand

posC

aboveA ∈ { nothing, B, C, D, gripper }

aboveB ∈ { nothing, A, C, D, gripper }

aboveC ∈ { nothing, A, B, D, gripper }

aboveD ∈ { nothing, A, B, C, gripper }

posA ∈ { on-table, other }

posB ∈ { on-table, other }

posC ∈ { on-table, other }

posD ∈ { on-table, other }

hand ∈ { empty, full }
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50Additive PDB Heuristics (3)
 BW: Is , additive?

▪ No: affects in , in 

▪ True for all combinations of

 An additive PDB heur. could use one of these:

▪

▪

▪ …

 Can't have two separate patterns

both of which include an 

▪ Those will be directly connected by some unstack action

aboveA aboveBunstack(A,B)

aboveC

aboveD

unstack(A,C)

unstack(A,D)

This formulation of the

Blocks World is

"connected in the wrong way"

for this approach

to work well
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51Additive PDB Heuristics (4)
 "Separating" patterns in the Gripper domain:

∈
∈
∈

Are these a problem?
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52Additive PDB Heuristics (5)
 No problem: We don't have to use all variables in patterns!

For each pattern we chose one variable

Then we have to include all actions affecting it

The other variables those actions affect [used()] don't have to be part of any pattern!
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53Additive PDB Heuristics (6)
 Notice the difference in structure!

Gripper: No pair of loc() facts has a direct connection through an action

BW: Every pair of aboveX facts has a direct connection through an action
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54Additive PDB Heuristics (7)
 When every action affects facts in at most one pattern:

 The subproblems we generated are completely disjoint

▪ They achieve different aspects of the goal

▪ Optimal solutions must use different actions

The heuristic never tries to generate
optimal plans for –

we have not included it in any pattern
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55Additive PDB Heuristics (8)
 Avoids the overestimation problem

This cannot happen

when every action affects facts

in at most one pattern

 The costs are additive

for multiple patterns

 Adding costs

from multiple heuristics

yields an

admissible heuristic!

To achieve p: Heuristic uses A1

To achieve q: Heuristic uses A2

Sum of costs is 4 – optimal cost is 3, using A3
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56Additive PDB Heuristics (9)
 Can be taken one step further…

 Suppose we have several sets of additive patterns:

▪ Can calculate an admissible heuristic from each additive set,

then take the maximum of the results

as a stronger admissible heuristic

p1 p2 p3 p4

4 patterns satisfying

additive constraints

p5 p6 p7 p8

5 patterns satisfying

additive constraints

p9

Sum 

admissible heuristic ℎ𝑝𝑑𝑏
1 (𝑠)

Sum 

admissible heuristic ℎ𝑝𝑑𝑏
2 (𝑠)

Max 

admissible heuristic ℎ𝑝𝑑𝑏
3 𝑠 = max(ℎ𝑝𝑑𝑏

1 𝑠 , ℎ𝑝𝑑𝑏
2 𝑠 )



Additive PDB Heuristics:
Accuracy
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58Additive PDB Heuristics (10)
 How close to h*(n) can an additive PDB-based heuristic be?

 For additive PDB heuristics with a single sum,

asymptotic accuracy as problem size approaches infinity…
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59Additive PDB Heuristics (11)
 In Gripper:

 In state sn there are n balls in , and no balls are carried

 Additive PDB heuristic ℎ𝑎𝑑𝑑
𝑃𝐷𝐵 𝑠𝑛 :

▪ Use a separate pattern for each ball location variable 

▪ For each pattern/ball, the optimal PDB cost is 2

▪ 

▪ 

▪ ℎ𝑎𝑑𝑑
𝑃𝐷𝐵 𝑠𝑛 = sum for n balls = 2n

 Real cost:

▪ Using both grippers:  

▪ pick, pick, move(room1,room2), 

drop, drop, move(room2,room1)

▪ Repeat n/2 times, total cost ≈ 6n/2 = 3n

 Asymptotic accuracy 2n/3n = 2/3
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60Additive PDB Heuristics (12)
 What quality guarantees can an additive PDB heuristic give?

 For additive PDB heuristics with a single sum,

asymptotic accuracy (fraction of ℎ∗) as problem size approaches infinity:

 Only guaranteed if the planner finds the best combination of patterns!

▪ This is a very difficult problem in itself!

 But as usual, this is a worst-case analysis…

h+ (too slow!) Additive PDB

Gripper 2/3 2/3

Logistics 3/4 1/2

Blocks world 1/4 0

Miconic-STRIPS 6/7 1/2

Miconic-Simple-ADL 3/4 0

Schedule 1/4 1/2

Satellite 1/2 1/6



bw-tower07-astar-ipdb:  Only 7 blocks,  A* search, based on PDB variation

 Blind A*: 43150 states calculated, 33436 visited

 A* + goal count: 6463 states calculated, 3222 visited

 A* + iPDB: 1321 states calculated, 375 visited

No heuristic is perfect – visiting some additional states is fine!


