é& Linkbping University !
Automated Planning

Pattern Databases:
"Who cares about that 2"

Jonas Kvarnstrom

Department of Computer and Information Science

Linkoping University

PDB 1: Introduction

First main idea behind pattern databases:

jonkv@ida

Let’s care about a few facts and ignore all others — everywhere

= Goals, preconditions, effects, states

A form of relaxation...

With some special features
(later!)

jonkv@ida

PDB 2: Dock Worker Robots

Example from Dock Worker Robots

] . States are
Could choose to care about container locations »orouped together”!

= in(container, pile), top(container,pile), on(c1,c2), ...

Abstract state in P’,
representing
many states in P
with different
robot locations, ...

Ignore robot locations, crane locations,
location adjacency, ...

Ordinary state in problem P,
all facts included .
pilel

| :

|

B loc?

i b) pile2

PDB 3: Planning in Patterns

In P’ we (pretend that we) can use the crane at p1 to:

3
jonkv@ida

= pick up c3 (should be possible)

= place something on r1 (too far away, but we don’t care)

aw Daths

= place five containers on a single truck to the goal!

But we can’t:

= pick up c1 (we do care about pile ordering)

= immediately place c1 below c2, ...

Let's formalize!

epi@Ayuof

4
0]

N

7,
|G’
o

@)

3

(7y)

R
(@)
O
fa)
)
-
=
£

(7]

Q

)

e

i)
(Vg)
G K
b fa)
o I
o >
V) 2
-

OJ
| >N
A =
> LS.
2
S o
J C
<L o
O
(7]
C
(@)
@)

BW4

BW4: Ground Atoms

9
jonkv@ida

All ground atoms (facts) in this problem instance:

(onAA) (on A B) (onAC) (on A D)
(onBA) (on B B) (on B C) (on B D)
(onCA) (on CB) (onCC) (on CD)
(onDA) (on D B) (on D C) (on D D)

(ontable A) (ontable B) (ontable C) (ontable D)
(clear A) (clear B) (clear C) (clear D)
(holding A) (holding B) (holding C) (holding D)

(handempty)

BW4: A Pattern

-

jonkv@ida

Example: only consider 5 ground facts related to block A
”Pattern”: p={(on A B), (on A C), (on A D), (clear A), (ontable A)}

Initial state:

A[B|CID

Goal:

ontable(A)
ontable(B)
ontable(C)
ontable(D)
clear(A)
clear(B)
clear(C)
clear(D)
handempty

ontable(A)

—

clear(A) An "abstract

state"

clear(A)
on(A,B)
on(B,C)
on(C,D)
ontable(D)
handempty

clear(A)
on(A,B)

—

An "abstract

goal"

BW4: Transformed Actions

Pattern p={(on A B), (on A C), (on A D), (clear A), (ontable A)}

Example action: (unstack A B)

9
jonkv@ida

= Before transformation:
:precondition (and (handempty) (clear A) (on A B))

:effect (and (not (handempty)) (holding A) (not (clear A)) (clear B)
(not (on A B))) ..
) Loses some preconditions and
= After transformation: offects
:precondition (and (clear A) (on A B))
-effect (and (not (clear A)) (not (on A B))
Let’s call this action
anp
Example action: (unstack C D) (not a set, but "restricted to p”)

= Before transformation:
:precondition (and (handempty) (clear C) (on C D))

:effect (and (not (handempty)) (holding C) (not (clear C)) (clear D)
(not (on CD)))

= After transformation:
.precondition (and) Loses all preconditions and
-offect (and) effects =» never used!

PDB Heuristics: Patterns, Abstract States

Given a pattern (set of ground facts) p
A state s is represented by the abstract state s N p

@
jonkv@ida

(clear A) () (clear A)
(on AB)
(on A B) (ontable B) (on A B) represented
(on B Q) _ O(nl a (Z ; N (on BD) by a single (clear A)
(on CD) - cear ~ (onD C) abstract (on A B)
(onCD)
(ontable D) (ontable C) state
(ontable D)
(handempty) (handempty) (handempty)
(clear A) (clear A)
(ontable A) EEEAY (ontable A)
(ontable A) represented
(clear B) . (clear B))
(holding B) by a single (clear A)
(OsIERE) ~ (clear C) ~ (o) abstract (ontable A)
o LI (onCD) lonDE) state
(ontable D) (ontable D) (ontable C)
(handempty) (handempty)

BW4: Smaller State Transition Graph

Reachable state transition graph for the given pattern:

jonkv@ida

Current state: Everything on the table, hand empty, all blocks clear
= Abstract state: sO = { (ontable A), (clear A) }

Note: Redundant edges
are omitted for clarity
(multiple actions with the same effect)

Relaxation!

Relaxation! (1)

Why is this a relaxation?

\:_IU)
jonk\;@ida

Step 1:In s, we can execute q; => In s N p, we can execute a; N p
S sNp :

contains precond(a;) contains

precond(a; N p)

ontable(A) clear(B) ontable(A)
ontable(B) clear(C)
ontable(C) clear(D)
ontable(D) handempty

clear(A) clear(A)

Relaxation! (2)

Relaxation 2:

jonkv@ida

If ¥ is the state transition function for transformed actions/states, then:

y'(snp,a;np) =y(s,a;) Np

SNp
nNp =

]/(S, ai)

So: Executable action sequences are preserved

Relaxation! (3)

Relaxation 3:

é)
jonkv@ida

Ifg € s,thengNpC<snNp

S SNp :
gnp

So: Solutions are preserved (but new solutions may arise)

State Representation for PDBs

PDB Heuristics: State Variables

9
jonkv@ida

For PDB heuristics, a state variable representation is useful

Typically:
= Reduces the number of facts

= Provides more information about which states are actually reachable!

Model problems using the state variable representation,
or let planners convert automatically from predicate representation

PDB Heuristics: State Variables (2)

jonkv@ida

Repetition: Blocks world with 4 blocks =
536,870,912 states (reachable and unreachable) =i
in the standard predicate representation _—

But in all 125 states reachable from "all-on-table" (all "normal” states):

= Block A satisfies exactly one of the following:
(holding A) — Held in the gripper

(clear A) — At the top of a tower
(onBA) — Below B
(onCA) — Below C
(onDA) — Below D

= =» Remove those facts, introduce state variable
aboveA € { gripper, nothing, B, C, D }

@
jonkv@ida

PDB Heuristics: State Variables (3)

Example, continued

536,870,912 states (reachable and unreachable) in predicate representation

20,000 states (reachable and unreachable) in state variable representation:
= aboveA € {nothing, B, C, D, gripper }
= aboveB € { nothing, A, C, D, gripper }
= aboveC € {nothing, A, B, D, gripper } The state variable translation

= aboveD € { nothing, A, B, C, gripper } is not part of the PDB heuristic!
= posA € {on-table, other}
= posB € { on-table, other }
= posC € { on-table, other }

Using state variables is useful
because PDBs work better
with fewer ”’irrelevant states”

= posD € {on-table, other} in the state space...

= hand € { empty, full }

Allows structure to remain in the abstract search space:
Preserves the fact that A can't be under B and under C

Also useful when choosing facts: Ignore where A is, care about where B is

jonkv@ida

PDB Heuristics: Rewriting the Problem

Rewriting works as before B D
Suppose the pattern is { aboveB, aboveD, posB, posD }

Rewrite the goal

= Original: {aboveB=A, aboveA=C, aboveC=D, aboveD=nothing, hand=empty }
= Abstract: { aboveB=A, aboveD=nothing }

Rewrite actions, removing some preconds / effects
= (unstack A D) no longer requires aboveA = nothing

= (unstack B C) still requires aboveB = nothing

aboveB € { nothing, A, C, D, gripper }
aboveD € { nothing, A, B, C, gripper }
posB € { on-table, other }

posD € { on-table, other }

9

jonkv@ida

PDB Heuristics: State Space Size

Abstract states reachable from "all on table", by pattern p...

Blocks Allvars p={aboveA} p={aboveA,posA} P={aboveA,aboveB}

4 125 5 10 24
5 366 6 12 35
6 7057 7 14~ 48
7 65990 8 16 \ 63
8 695417 9 18 \ 80
9 8145730 10 20 \ 99

Immediately
n(A A dn(A) /st(B.A n(B,A) st(CA) \st(D,A) “st(FA) ~ stE.A) CA D.A FA E.A
unstack(A,B): B) (A) [up(A) _~dn(A) /st(B.A) SUC,A) \StD.A) st(un(C,A) un(D.A) un(FA) un(E.A)

Don’t care if @ @ @ @ . ® ®

aboveB=A

St(A,B) Un(A,B)

un(C,A) st(D,A)un(D.A) “st(FA) un(FA) “StE.A) u

.M. (=) @@

t(B.A)

PDB Heuristics: State Space Size (2)

jonkv@ida

For 6 blocks, originally 7057 reachable states
Pattern {aboveA,aboveB} = 48 reachable states

e
O ORIE O WO SN O[O L OSE O Y 0 SEIE.OY

.@.@@..‘C.@..@..@..@O.@....
OIOIOIONI0

Computing PDB Heuristics

jonkv@ida

PDB Computation: Main ldea

To calculate h(s) for a new state s: aboveA=B,
posA=on-table,

Example: 6 blocks, pattern {aboveA,posA} aboveB=nothing, ...

Convert s to abstract state: aboveA=B

posA=on-table

Find optimal path to abstract goal state — in a much smaller search space

;-‘

= Current abstract state is s,:

un(A,B) dn(A) mp((A dn(A) /st(B.A) un(B,A) st(CA) st(D,A) “st(FA) - stEA) un(C,A) un(D,A) un(F,A) un(g,A)
st(A,B) un(A, B}
un(B,A) /'st(C,A) un(C,A) st(D,A) un(D,A) SIFA un(F,A) ~st(E,A) un(g,A)

. . @ @ @ abstract goal states

jonkv@ida

Tweak 1: Caching

Because we keep few state variables:
Many real states map to the same abstract state
=>» An abstract state may be encountered many times during search
=>» Cache calculated costs

un(A,B) dn(A) /up(A) dn(A) /st(B,A) un(B,A) st(C,A)\st(D,A) “st(FA) ~ stEA) un(C,A) un(D,A) un(F,A) un(gE A)
st(A,B) un(A,B)

un(B,A) /st(C A un(C,A) st(D,A)un(D,A) ~st(FA) un(F,A) ~st(E,A) un(EA)

© ® © ® ©

Tweak 2: Databases!

NY
a
jonkv@ida

Dijkstra efficiently finds optimal paths from all abstract states

=>» Precalculate all heuristic values for each pattern

Store in a look-up table — a database

Second main idea!

Database Creation

jonkv@ida

Preprocessing (1)

Preprocessing step | (6 blocks, pattern {aboveA, posA})

Create the initial abstract state...

aboveA=nothing, aboveA=nothing,
aboveB=nothing,
aboveC=nothing,
aboveD=nothing,
aboveE=nothing,
aboveF=nothing,
posA=on-table, posA=on-table,
posB=on-table,
posC=on-table,
posD=on-table,
posE=on-table,
posF=on-table,
hand=empty

jonkv@ida

Preprocessing (2)

Preprocessing step 2

Find all reachable abstract states

= Start in the abstract initial state (sO below)
= Apply all applicable actions to all states you find (DFS, BFS, ...)
= Small, therefore fast

aboveA=nothing,
posA=on-table

un(A,B) dn(A) ‘up(A dn(A) 'st(B,A) un(B,A) st(C,A) st(DA) t(F,A) ~ st(E,A) un(C,A) un(D,A) un(F,A) un(g,A)
st(A,B) un(A,B)
un(B,A) 'st(C,A) un(C,A) st(D,A)un(D,A) - st(FA) un(F,A) ~st(E,A) un(g,A)

o OENOENORNNO

Preprocessing (3)

(B,

jonkv@ida

Step 3: Which abstract states satisfy the abstract goal?
Real goal = { aboveA=B, aboveB=C, aboveC=D, aboveD=E, aboveE=F }
Abstract goal = {aboveA=B}

= Satisfied in two of the reachable states

—@-

un(A,B) dn(A) ‘up(A dn(A) 'st(B,A) un(B,A) st(CA) st(D,A) “st(FA) - st(EA) un(C,A) un(D,A) un(F,A) un(g,A)
st(A,B) un(A,B)
A) un(B,A) 'st(C.,A) un(C,A) st(D,A)un(D,A) - st(FA) un(F,A) ~st(E,A) un(g,A)

® ® ©® ©

jonkv@ida

Preprocessing (4)

Preprocessing step 4: Compute the database

For every abstract state
reachable from the
abstract initial state,

find a cheapest path
to any abstract goal state

=

un(A,B) dn(A) up(A dn(A) st(B,A) un(B,A) st(CA) syD,A) st(FA) SsiE.A) un(C,A) un(D,A) un(F,A) un(g,A)

® @ @ ONOROXO,

st(A.B) un(A.B)

st(B,A) un(B,A) st(C,A) un(c (D, A)un(D,A) st un(E,A) stE.A) un(gA)

OO @ @ (=)

jonkv@ida

Preprocessing (5)

More efficient computation:

Start with cost=0 for all abstract goal states

Search backward from these states — single call to Dijkstra

= Queue initialized with multiple nodes/states of cost 0 (s2, s9)

= Edges followed backward (in explicitly computed graph, no y 1

=

un(A,B) dn(A) wp(A) dn(A) st(B,A) un(B,# St(C,A) st(D,A) st(F,A) sSUE.A) un(C,A) un(D,A) un(F,A) un(g A)

® © @ @.@@

st(A.B) un(A.B)

&

st(B,A) un(B,A) st(C,A) un((D.A)un(D,A) s un(E,A) stE.A) un(gA)

@ @ (=)

necessary)

Preprocessing (6)

(B,

jonkv@ida

Example: Priority queue contains <s2/cost=0,s9/cost=0>
Pick s2

= A ”successor” is s0, reached backwards by stack(B,A) of cost 2;

= s0 inserted in queue with cost 2

Priority queue contains <s9/c=0, s0/cost=2>, pick s9

= A ”successor” is s8, ... Assuming cost(stack/unstack)=2,

&

un(A,B) dn(A) up(A dn(A) st(B,A) un(B,A) st(C,A) st(D,A) st(F,A) slE un(C,A) un(D,A) un(F,A) un(g,A)

O, @ @ @..@

st(A.B) un(A.B)

&

A) un(B,A) st(C.A) un(C,A) st(D.A)un(D,A) st(FA) un(F,A) - st(EA) un(g.A)

& ® &

cost(pickup/putdown)=1

PDB Heuristics: Databases

Database:

w
S
jonkv@ida

Stores the cost found by Dijkstra for every abstract state s
= Cost is optimal within the relaxed problem
= Cost is admissible for the “real” problem

Abstract state

Using PDB Heuristics during Search

PDB Heuristics in Forward Search (1)

w
9
jonkv@ida

Step |: Automatically generate a pattern

A selection of state variables to consider

Choosing a good pattern is a difficult problem!

= Different approaches exist...

Step 2: Calculate the pattern database

As already discussed

PDB Heuristics in Forward Search (2)

D
~
jonkv@ida

Step 3: Forward search in the original problem

For each new successor state s, calculate heuristic value h, 45 (1)

= Example: s;={ aboveD = A, aboveA = C, aboveC = nothing, aboveB = gripper,
posA = other, posB = other,
posC = other, posD = on-table, B u

hand = full } H

D

Example: s; ={ aboveB = gripper, aboveD = A, posB = other, posD = on-table }

= Convert this to an abstract state

* Use the database to quickly look up hyqp(s;) =
the cost of reaching the nearest abstract goal from s;

aboveB = gripper, aboveD = A, posB = other, posD = on-table =» cost nl/
aboveB = gripper, aboveD = A, posB = other, posD = other =» cost n2

How informative can PDBs be?

Computation Time (1)

w
9
jonkv@ida

How close to 1" (n) can an admissible PDB-based heuristic be!?

Wrong question!

= A pattern can include all state variables =» equal to h*(n)

Then computing the database takes too much time...

HOW much time?

of reachable abstract:
Exponential in # of
selected state vars

Dijkstra’s algorithm: |V| = number of
O(|E| + |V|log|V]) reachable abstract states

Exponential in the number of state variables in the pattern...

Possible state variables: Linear in problem size (length of PDDL file,...)
Select all & PDB computation exponential in problem size

Computation Time (2)

3
o
jonkv@ida

We want: Polynomial in the problem size (length of PDDL file,...)

Counteract this:

Exponential in the number of state variables in the pattern...

Using this:

Select a logarithmic number of state variables — growing as log(problem size)

Computation time: 0(2!08problemsizey \whjch js polynomial in problem size

Asymptotic Accuracy: Single PDB Heuristic

jonkv@ida

Assume (as before) an infinite set of problems {P;|i = 0}

Assume a strategy for selecting 2
a single pattern for each problem S log,(x) log, (x)
= So that pattern size grows at most §' 09, (X
as O(log k) for problem size k § """""""""""""]
.Bmée:::::::1:{}::::x:

problem size

What is the best accuracy guarantee any strategy can give!
= h(n) < cost of reaching the most expensive subgoal of size O(logk)

Subgoal size is not constant but grows with problem size k — good!

But still, log(k) grows much slower than k...

=>» For any given single pattern, asymptotic accuracy is 0 in many domains

= As before, practical results are usually better!

PDB Heuristics: Gripper Example

A common restricted

gripper domain: Compact state variable representation:

loc(ball)) € { room1, room2, gripperl, gripper?2 }
One robot with loc-robot € { room1, room?2 }
two grippers

Two rooms 2 * 4n states, some unreachable — which ones?

All n balls originally in
the first room

Obijective: All balls in
the second room

Some possible patterns for k > 1 balls:

{loc(ball,) } =» 4 abstract states
{loc(ball,), loc-robot } =» 8 abstract states
{loc(ball) | i<k} => 4k abstract states

{loc(ball) | i<log(k)} =>» 48 abstract states

jonkv@ida

Multiple Patterns:

More information,
Same pattern size

BW4: Subproblem 2

Subproblem 2: Some facts related to B

jonkv@ida

Current state: Everything on the table, hand empty, all blocks clear
= Abstract state: { (ontable B), (clear B) }

Goal state:
AonBonConD

= Abstract goal:
{ (onBC) }

Find a path,
compute its cost

jonkv@ida

BW4: Subproblem 3

Subproblem 3: Only consider (holding ?x) facts...

Not handempty, so can hold __(«),

—
many blocks m .
() (e (e

3
an
jonkv@ida

Improving PDBs

For each pattern, compute a separate pattern database

Each such cost is an admissible heuristic

What then? Do we sum the costs?

Possibly in satisficing planning — but would generally not be admissible...

Pattern |, aboveB: Pattern 2, aboveC: Sum:
| need stack(A,B), cost 2 | need stack(B,C), cost 2 2+2=4

Could have used buildTower(A,B,C), cost 3

Only detectable if we consider the whole problem

But the maximum of two admissible heuristics is also admissible!
And polynomial time: k patterns require k computations

What is the new level of accuracy!’

Still ... asymptotically / worst case

But this can still work well in practice!

Additive PDB Heuristics

Additive PDB Heuristics (1)

To create admissible heuristics by summing PDB heuristics:

3
oo
jonkv@ida

Each fact should be in at most one pattern

Each action should affect facts in at most one pattern

=» Additive pattern database heuristics

Additive PDB Heuristics (2)

BW: Is p1={facts in even rows}, p2={facts in odd rows} additive?

9
(W)
jonkv@ida

No: pickup(B) affects {aboveB,posB} in p1, {hand} in p2

aboveB € { nothing, A, C, D, gripper }

aboveA

aboveB aboveD € { nothing, A, B, C, gripper }

\ posB € { on-table, other } aboveC
aboveD

posD € { on-table, other } posA

posB

posC

pl

N
N

One potential problem:

Both patterns could use pickup(B) in their optimal solutions
= sum counts this twice! This is what we're trying to avoid...

Additive PDB Heuristics (3)

BW:Is pl={aboveA}, p2={aboveB} additive?
= No: unstack(A,B) affects {aboveB} in p1, {aboveA} in p2

= True for all combinations of aboveX

aboveA unstack(A,B) aboveB

unstack(A,C)

unstack(A,D) aboveD

An additive PDB heur. could use one of these:

* pl={aboveA} This formulation of the

= pl ={aboveA, aboveC, aboveD } Blocks World is

- .. "connected in the wrong way"
Can't have two separate patterns p1,p2 for this approach

both of which include an aboveX to work well

= Those aboveX will be directly connected by some unstack action

Additive PDB Heuristics (4)

"Separating” patterns in the Gripper domain:

loc-robot

pick(balll, gripper?)

pick(balll, gripperl)

loc(balll)
drop(balll, gripper?)

drop(balll, gripperl)

pick(ball2, gripperl) pick(ball2, gripper2)
loc(ball2)
drop(ball2, gripperl) drop(ball2, gripper?)

(T1oddri8)pasn
(zraddui8)pasn

Ny

loc(ball,) € { room1, room?2, gripperl, gripper?2 }
loc-robot € { room1, room?2 }
used(gripper,) € { true, false }

o
=
®

—
-

=

o
o —

loc-robot

loc(balll)

(zraddui8)pasn

c
0
0]
ol
N
0Q
a
o
)
Q)
ﬁ
=
N

loc(ball2)

p2 = {loc(ball2) }

For each pattern we chose one variable
Then we have to include all actions affecting it

The other variables those actions affect [used()] don't have to be part of any pattern!

Additive PDB Heuristics (6)

jonkv@ida

Notice the difference in structure!

c
n
™
ol
—~
Q
.
o
o
Q)
H
=
N

unstack(A,B)
unstack(A,C) aboveC

unstack(A,D) aboveD

BW: Every pair of aboveX facts has a direct connection through an action

pick(balll, gripperl) pick(balll, gripper2)

loc(balll)

drop(balll, gripperl) drop(balll, gripper2)

pick(ball2, gripperl) pick(ball2, gripper?2)

loc(ball2)

drop(ball2, gripperl) drop(ball2, gripper2)

Gripper: No pair of loc() facts has a direct connection through an action

(zradduag)pasn

Additive PDB Heuristics (7)

When every action affects facts in at most one pattern:

a
S
jonkv@ida

The subproblems we generated are completely disjoint
= They achieve different aspects of the goal

= Optimal solutions must use different actions

The heuristic never tries to generate

optimal plans for used(gripperl) —
we have not included it in any pattern

The heuristic's optimal plans for {loc(balll)} can only use these actions
pick(balll, gripperl)
‘ drop(balll, gripperl) |

pick(ball2, gripperl)

pick(balll, gripper?)

' drop(balll, gripper2) ‘
‘ pick(ball2, gripper2) ’
d

rop(ball2, gripper2)

loc(balll)

(T1oddrid)pasn
(zraddrid)pasn

loc(ball2)

drop(ball2, gripperl)

The heuristic's optimal plans for {loc(ball2)} can only use these actions

Additive PDB Heuristics (8)

jonkv@ida

= Avoids the overestimation problem

Problem:

Goal: pandq

Al: effect p

A2: effect q

A3: effect p and q // BuildTower

To achieve p: Heuristic uses Al
To achieve q: Heuristic uses A2

Sum of costs is 4 — optimal cost is 3, using A3

This cannot happen
when every action affects facts

in at most one pattern

=» The costs are additive

for multiple patterns
=» Adding costs
from multiple heuristics
yields an
admissible heuristic!

Additive PDB Heuristics (9)

Can be taken one step further...

(& n
a
jonkv@ida

Suppose we have several sets of additive patterns:

= Can calculate an admissible heuristic from each additive set,
then take the maximum of the results
as a stronger admissible heuristic

Max =
admissible heuristic hz?;db (s) = max(hzlgdb (s), hzz,db (s)

Sum => Sum =>
admissible heuristic hzl,db (s) admissible heuristic hzzgdb (s)
pl p2 p3 p4 p5 p6 p7 p8 p9

4 patterns satisfying 5 patterns satisfying
additive constraints additive constraints

Additive PDB Heuristics:
Accuracy

Additive PDB Heuristics (10)

How close to h*(n) can an additive PDB-based heuristic be?

(& n
9
jonkv@ida

For additive PDB heuristics with a single sum,
asymptotic accuracy as problem size approaches infinity...

Additive PDB Heuristics (11)

(& n
9
jonkv@ida

In Gripper:

In state s there are n balls in room1, and no balls are carried

Additive PDB heuristic h/ 55 (s,,):

= Use a separate pattern for each ball location variable loc(ball,)

= For each pattern/ball, the optimal PDB cost is 2
pick(ball,room1,gripperl): loc(ball)=room1 =» loc(ball)=gripper1l
drop(ball,room2,gripperl): loc(ball)=gripperl = loc(ball)=room?2

= hPDE(s,) = sum for n balls = 2n

Real cost:

= Using both grippers:
pick, pick, move(room |,room2),
drop, drop, move(room2,room|)

= Repeat n/2 times, total cost = 6n/2 = 3n

=>» Asymptotic accuracy 2n/3n = 2/3

Additive PDB Heuristics (12)

What quality guarantees can an additive PDB heuristic give?

3
o
jonkv@ida

For additive PDB heuristics with a single sum,
asymptotic accuracy (fraction of h™) as problem size approaches infinity:

h+ (too slow!) Additive PDB

Gripper 2/3 2/3
Logistics 3/4 1/2
Blocks world | /4 0

Miconic-STRIPS 6/7 1/2
Miconic-Simple-ADL 3/4 0

Schedule | /4 1/2
Satellite 1/2 1/6

Only guaranteed if the planner finds the best combination of patterns!

= This is a very difficult problem in itself!

But as usual, this is a worst-case analysis...

bw-tower07-astar-ipdb: Only 7 blocks, A* search, based on PDB variation

Blind A*: 43150 states calculated, 33436 visited

A* + goal count: 6463 states calculated, 3222 visited
A* + iPDB: 1321 states calculated, 375 visited

No heuristic is perfect — visiting some additional states is fine!

