
jonas.kvarnstrom@liu.se – 2019

Automated Planning
Relaxed Planning Graphs

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2Basic Idea
Apply delete relaxation

Create a graph

efficiently representing many ways

of achieving the goal

in the relaxed problem

Extract one possible solution 𝝅 from the graph

(not necessarily optimal!)

𝒉𝑭𝑭 𝐧 = |𝝅|
or

𝒉 𝐧 = 𝐜𝐨𝐬𝐭 𝝅 ≥ 𝒉+(𝒔)

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Running Example
 Running example due to Dan Weld (modified):

 Prepare and serve a surprise dinner,

take out the garbage,

and make sure the present is wrapped before waking your sweetheart!



 

 



4

jo
nk

v@
id

a
jo

nk
v@

id
a

4

Pointless actions:

No effects!

Running Example (2)
 Let’s apply delete relaxation

 Prepare and serve a surprise dinner,

take out the garbage,

and make sure the present is wrapped before waking your sweetheart!

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5RPG 1: Propositions
 Now we want to find a relaxed plan

 What is initially?

 first proposition level in a relaxed planning graph

Planning Graph introduced by GraphPlan

Heuristics based on Relaxed Planning Graph

pioneered by FF (FastForward)

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6RPG 2: Actions and Effects
 Next step:

 Which actions could be executed first?

 Which effects would we get?

Build a graph

with actions linking

to preconds and effects

Assumes conjunctive

preconds, effects!

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7RPG 3: Interpretation
 Here we see:

 Which propositions can we make true in one step?

 Which actions would we need?

But wait!

Prop level 1 is missing

”garbage”, which

could remain true

from prop level 0…

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8RPG 4: Maintenance Actions
 Solution: ”No-op” or ”maintenance” actions

 One for each proposition (fact) that exists

 No need to treat persistence separately

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9RPG 5
 What does this mean for the actions?

First action could be

clean, cook or wrap

First actions could be

any combination of

clean, cook or wrap

None can invalidate the

others’ preconditions:

No negative effects!

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10RPG 6
 What does this mean for the facts?

We can choose actions

that achieve any subset of

and we don’t have to care

about their order!

Given delete relaxation!

In reality, negative effects

interfere… but we aim for

a heuristic!

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11RPG 7
 Can we reach the goal now?

 No, can’t achieve served yet...

We need dinner

before serve

Level 1 is only for actions

whose preconds are true

at the start

Chains of dependencies



Many levels in the graph

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12RPG 8
 Let’s add another level

 Achieves all goals

 Can select actions from the graph

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Solution Extraction
 For each goal fact, choose one action achieving it

 

 

 

2*1*2 = 4 alternatives!

All work,

but some may result in

shorter plans… Why?

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15Solution Extraction (2)
 For all selected actions in level 2 (marked red):

 Must first achieve their preconditions!

 This is a new goal to achieve by selecting actions at level 1

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16Solution Extraction (3)
 Unlike backward search in goal space:

 Simpler concept of relevance: No negative effects that interfere

 At each level, select sets of actions, together achieving all goal facts

▪ No need to consider ”what the single selected action didn’t achieve”

▪ Simpler backward chaining: Instead of 𝛾−1, just conjoin preconds of selected actions

 Already built a graph from the initial state

▪ And no possibility of negative effect interference  we can reach the initial state

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Solution Extraction (4)
 Final relaxed plan:

 First cook

 Then wrap and serve, in some order

 ℎ𝐹𝐹 𝑛 = 3, assuming the algorithm chose this order!

Relaxed plan:

Not a solution to the

original problem!

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18Solution Extraction (5)
 Does the choice of actions matter?

 Choosing a noop action may mean fewer actual actions

 Different actions chosen at one level:

▪ May lead to different actions at previous levels

▪ Which then leads to different preconds to satisfy…

 And so on…

 Not equivalent to ℎ+ 𝑛 : Would require an optimal relaxed plan

 Would have to test different action selections

 May require additional levels (with fewer selected actions per level)

Actual solution

extraction algorithm

in FF

uses backward search

in the RPG

+ heuristics

for this search!

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Properties of Relaxed Planning Graphs
 The relaxed planning graph considers positive interactions

 For example, when one action achieves multiple goals

 Ignores negative interactions

 Can extract a Graphplan-optimal relaxed plan

(minimal number of levels / ”parallel” steps)

in polynomial time

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Recap: Backward Search

BACKWARD SEARCH

 We know if the effects of an action

can contribute to the goal

 Need guidance to determine

which backward paths

will lead to (good) solutions

at(LiU)

…

at(home)

have-heli

at(home)

have-shoes

Large search

tree, no path

to initial state?

One approach: Use heuristics. But other methods exist…

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Reachable States
 Suppose that we could quickly determine:

 possibly-reachable(𝑠0, 𝑠) – may state 𝑠 be reachable from 𝑠0?

Possibly reachable Not (possibly reachable)

Actually reachable

(not known

which ones!)

Unreachable…

Definitely

unreachable…

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23Reachable States
 Then we could prune many ”fruitless branches”:

at(LiU)

…

at(home)

have-heli

at(home)

have-shoes

Large search

tree, no path

to initial state?

Not reachable

Maybe reachable

Maybe reachable

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Planning Graph
 A (non-relaxed) Planning Graph:

 Useful to generate states – also useful in backwards search!

Initial

state

10 possibly

executable

actions

8 possibly

reachable

states

47 possibly

executable

actions

200

possibly

reachable

states

1200

possibly

executable

actions

4000

possibly

reachable

states

k+1 proposition levels

Which propositions may possibly hold in any reachable state?

k action levels

Which actions may possibly be executed in each step?

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Negative Effects Mutual Exclusion

 Two actions at the same action level are mutex (can’t be selected together) if

 Inconsistent effects: an effect of one negates an effect of the other

 Interference: one deletes a precondition of the other

 Competing needs: they have mutually exclusive preconditions (not shown)

 Otherwise:

 Both might appear at the same time step in a solution plan

 Two literals at the same proposition level are mutex if

 Inconsistent support A: one is the negation of the other,

 Inconsistent support B: all ways of achieving them are pairwise mutex

Recursive

propagation

of mutexes

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Example









 

 















All goal literals are present in level 2, and none of them are (known to be) mutex!

