é& Linkbping University !
Automated Planning

Delete Relaxation:
“Things can only get better!”

Jonas Kvarnstrom

Department of Computer and Information Science

Linkoping University




9
jonkv@ida

Re-achieving Conditions

To make actions applicable and achieve goals:

We often have to re-achieve what was already achieved

Example: Driving
Initial state: { at(A), have-fuel }
Goal: { at(D), have-fuel }
Actions: drive(?x,?y) — must follow roads, must have-fuel
Solution:
- drive(A,B)
= refuel
= drive(B,C)
= refuel
= drive(C,D)
= refuel



Re-achieving Conditions (2)

a
jonkv@ida

Suppose conditions always remained achieved
If have-fuel is true, it always remains true

New solution:
= drive(A,B)
= drive(B,C)
= drive(C,D)

Can we use this to construct a relaxation?



Positive and Negative Effects (1)

-

Suppose we use the book's classical representation:

Precondition = set of literals that must be true
Goal = set of literals that must be true
Effects = set of literals (making atoms true or false)

Suppose we have a solution <A1,A2>:
= Initially have-fuel
= Action drive =¥ requires have-fuel, makes have-fuel false

= Action refuel =» requires (not have-fuel), makes have-fuel true

Symmetry:

= Positive effects can achieve positive conditions, un-achieve negative conditions

= Negative effects can achieve negative conditions, un-achieve positive conditions

jonkv@ida



Positive and Negative Effects (2)

Suppose we use PDDL's plain :strips level

Forbids negative preconditions / goals

= Precondition = set of atoms (no negations!)
= Goal = set of atoms (no negations!)
= Effects = set of literals (making atoms true or false)

In this setting:

= Positive effects are never "problematic:
Adding more facts to the state can only make more preconds/goals satisfied

= Only negative effects can "un-achieve" goals or preconditions

= And negative effects can only "un-achieve” goals or preconditions:
We never need them

jonkv@ida



a
jonkv@ida

Delete Relaxation (1)

Assuming positive conditions, let’s remove all negative effects

Example: (unstack ?x ?y)

= Before transformation:
:precondition (and (handempty) (clear ?x) (on ?x ?y))
:effect (and (not (handempty)) (holding ?x) (not (clear ?x)) (clear ?y)
(not (on ?x ?y) )

= After transformation:
:precondition (and (handempty) (clear ?x) (on ?x ?y))
-effect (and (holding ?x) (clear ?y))

A fact that is true stays true

Is this a relaxation?

Positive conditions =»
= No solution can depend on a fact being false in a visited state

= No solution can disappear because we avoid making facts false



jonkv@ida

Delete Relaxation (2): Example

STS for the original problem Delete-relaxed STRIPS problem

on(A,C) on(A,C)
u ontable(B) u ontable(B)
H E ontable(C) H B ontable(C)
clear(A) ' clear(A)
clear(B) clear(B)
handempty handempty

ontable(B) on(A,C) on(A,C) on(A,C)
ontable(C) ontable(C) ontable(B) ontable(B)
clear(B) clear(A) ontable(C) ontable(C)
clear(C) holding(B) clear(A) clear(A)
holding(A) clear(B) clear(B)
clear(C) holding(B)
u u E holding(A) handempty

<

handempty

C

No physical ’meaning”!




STS for the original problem

on(A,C)
u ontable(B)
H B ontable(C)
clear(A)
clear(B)
handempty
¢
3
A\
9’&6
RN
ontable(B)
ontable(C)
clear(B)
clear(C)
holding(A)
a“
)
o
v}
(]
-l
©»

-«

Initial state
does not change

Same "origin”,
fewer facts removed

C

Different "origin” but
same action sequence,
fewer facts removed

Delete-relaxed STRIPS problem

on(A,C)
u ontable(B)

H B ontable(C)

‘ clear(A)
clear(B)
handempty

on(A,C)
ontable(B)
ontable(C)
clear(A)

clear(B)

clear(C)
holding(A)

handempty

stack(A,B)



STS for the original problem Delete-relaxed STRIPS problem

on(A,C) on(A,C)
. ontable(B) . ontable(B)
B ontable(C) B ontable(C)
\ clear(A) ‘ clear(A)
clear(B) clear(B)
handempty handempty
¢
3
9""’&\
RN
on(A,C)
ontable(B) ontable(B)
ontable(C) ‘ ontable(C)
clear(A)
clear(B) clear(B)
clear(C) clear(C)
holding(A) holding(A)
handempty

No action requires

the absence of a fact

‘ Applicable
actions: app,

Applicable
actions: appq




jonkv@ida

Delete Relaxation (5): Example

0] g € original propiem Jelete-relaxec RIFS problem

on(A,C) on(A,C)

H ontable(B) u ontable(B)

E ontable(C) u E ontable(C)

clear(A) clear(A)
clear(B) clear(B)
handempty handempty

ontable(B) on(A,C)
ontable(C) ontable(B)
clear(B) ontable(C)
clear(C) clear(A)
holding(A) clear(B)
No goal requires the de‘fr(c)
absence of a fact i)
handempty

Satisfies the : Also satisfies
goal? the goal




Delete Relaxation (6)

Negative effects are also called "delete effects”

jonkv@ida

They delete facts from the state

So this is called delete relaxation

"Relaxing the problem by getting rid of the delete effects”

’Relaxed plan for P’ = plan for the delete-relaxed version of P

Delete relaxation does not mean
that we "delete the relaxation™ (anti-relax)!

Delete relaxation is only a relaxation
if preconditions and goals are positive!



Delete Relaxation (7)

Since solutions are preserved when facts are added:

9
jonkv@ida

A state where additional facts are true can never be "worse"!
(Given positive preconds/goals)

ontable(B)

(O ontable(B)
ontable(C)
h * clear(B) < h * clear(B)
clear(C) — clear(C)
holding(A) i
handempty IR

Given two states (sets of true atoms) s,s'":
s O s’ = h*(s) <=h*(s’)



Delete Relaxation:

State Space Examples



jonkv@ida

Reachable State Space: BW size 2

5 states
8 transitions

(B) putdown(A)

nstack(A,B)

25 states
210 transitions

Tk B




Delete-Relaxed BW size 2: Detail View

Many new transitions caused by loops,
as expected!

jonkv@ida

pickup(B) pickup(A)
e» putdown (B Jpickup(B) e—- putdown(Adpickup(A)
- e

stack(B,B) i pickup(B) stack(A,A) stack(A,B)

s icku > BYstack(B,B) e sickupA)pickup(B) em pickup (A)

@ A) Npickup(A) stack(B,B) stack(A,A) pickup(®) stack(A,B)

e_ @ pickup(B) e@ putdown(B)
W,Wmackﬂ) stak(B,B) stack(A,B)

kup(B) —— ...-.:mmmm\ butdown(B) “

w stack(MB\stackm A)

stack(A,B) stack(A,A) Stack(B,B)

‘4__‘



jonkv@ida

Delete-Relaxed: "Loops” Removed

5 states
8 transitions

putdown(B) putdown(A)

25 states
50 transitions

(BB) pickup(B)

ck(A.B) stack(B,A) stack(A,B) /stack(B,B) stack(A,B) /stack(B,A) , . pickup(B)

stack(B,A)



The Optimal Delete Relaxation Heuristic



9
jonkv@ida

Optimal Delete Relaxation Heuristic

If only delete relaxation is applied:

We can calculate the optimal delete relaxation heuristic, h* (n)

h*(n) = the cost of an optimal solution
to a delete-relaxed problem
starting in node n




Accuracy of h+ in Selected Domains

How close is h™ (n) to the true goal distance h*(n)?

Worst case asymptotic accuracy as problem size approaches infinity:

= Blocks world:

1/4

> h*(m) = k' (n)

Optimal plans in delete-relaxed Blocks World
can be down to 25% of the length of optimal plans in "real” Blocks World

B

&
)
E
F
G
H
J

Standard:
unstack(A,B)
putdown(A)
unstack(B,C)
putdown(B)
unstack(C,D)
putdown(C)

unstack(H,I)
stack(H,J)

pickup(G)
stack(G,H)
pickup(F)
stack(F,G)
pickup(E)
stack(E,F)
pickup(D)
stack(D,E)

Relaxed:
unstack(A,B)
unstack(B,C)
unstack(C,D)
unstack(D,E)
unstack(E,F)
unstack(EG)
unstack(G,H)
unstack(H,I)

stack(H,J)
DONE!

=

jonkv@ida



NY
9
jonkv@ida

Accuracy of h+ in Selected Domains (2)

How close is h™ (n) to the true goal distance h*(n)?

Worst case asymptotic accuracy as problem size approaches infinity:

= Blocks world: 1/4 2> ht(n) = ih* (n)

= Gripper domain: 2/3 (single robot moving balls)

= Logistics domain: 3/4 (move packages using trucks, airplanes)
= Miconic-STRIPS: 6/7 (elevators)

= Miconic-Simple-ADL: 3/4 (elevators)

= Schedule: 1/4 (job shop scheduling)

= Satellite; 1/2 (satellite observations)

Details:

= Malte Helmert and Robert Mattmuller
Accuracy of Admissible Heuristic Functions
in Selected Planning Domains




Example of Accuracy

jonkv@ida

How close is h™ (n) to the true goal distance h*(n)?

In practice: Also depends on the problem instance!

unstack(A,C) A I;Ciip(B; [SlEiCk(SB] ,C); stack(A,B)
pickup(B) - '

stack(B,C) HBH Good action!

stack(A,B)

= h+ =4 [h*=6] ki unstack(A,C); stack(B,C); stack(A,B)

=2 h+=3[h*=7]

Seems equally good as unstack,but is worse

H o
D
aﬂu u unstack(A,C); pickup(B);
— a stack(B C); stack(A B)
\——

Performance also depends on the search strategy

= How sensitive it is to specific types of inaccuracy



Computing the
Optimal Delete Relaxation Heuristic



Computing h+

NY
9
jonkv@ida

Is h* (n) easier to compute than h*(n)!?

h*(n) = length of optimal plan for arbitrary planning problem
= Supports negative effects
= |f we can execute either al;a2 or a2;al:

al removes p, a2 adds p = net result:add p

a2 adds p, al removes p =» net result: remove p

Both orders must be considered

h*(n) = length of optimal plan after removing negative effects
= |f we can execute either al;a2 or a2;al:

Must lead to the same state (add p1 before p2, or p2 before p1)

Sufficient to consider one order — simpler?

Incomplete analysis

= But the worst case for h*(n) is easier than the worst case for h*(n)



jonkv@ida

Calculating h+

Still difficult to calculate in general!
NP-equivalent (reduced from PSPACE-equivalent)

= Since you must find optimal solutions to the relaxed problem

Even a constant-factor approximation
is NP-equivalent to compute!

= Finding h(n) so that Vn.h(n) = c - h*(n)

Therefore, rarely used "as is"

But forms the basis
of many other heuristics

stack
stack(B,B)

Ab (BB) bickup(B) sta
stack(B,B) stack(B,A) ck(A,B) stack(B,A) stack(A,B) /stack(B,B) stacl

(X L X ©
stack(B,B) stack(A,B) /stack(B A) k(A,B) tack(A,A) stack(B,A) \stack

q""'




