Automated Planning

Delete Relaxation: "Things can only get better!"

Jonas Kvarnström
Department of Computer and Information Science Linköping University

Re-achieving Conditions

- To make actions applicable and achieve goals:
- We often have to re-achieve what was already achieved
- Example: Driving
- Initial state: \{at(A), have-fuel \}
- Goal: \{at(D), have-fuel \}
- Actions: drive(?x,?y) - must follow roads, must have-fuel
- Solution:
- drive(A,B)
- refuel
- drive(B,C)
- refuel
- drive(C,D)
- refuel

Re-achieving Conditions (2)

- Suppose conditions always remained achieved
- If have-fuel is true, it always remains true
- New solution:
- drive(A,B)
- drive(B,C)
- drive(C,D)

Positive and Negative Effects (1)

- Suppose we use the book's classical representation:
- Precondition = set of literals that must be true
- Goal $\quad=$ set of literals that must be true
- Effects $\quad=$ set of literals (making atoms true or false)
- Suppose we have a solution <A1,A2>:
- Initially have-fuel
- Action drive \rightarrow requires have-fuel, makes have-fuel false
- Action refuel \rightarrow requires (not have-fuel), makes have-fuel true
- Symmetry:
- Positive effects can achieve positive conditions, un-achieve negative conditions
- Negative effects can achieve negative conditions, un-achieve positive conditions

Positive and Negative Effects (2)

- Suppose we use PDDL's plain :strips level
- Forbids negative preconditions / goals
- Precondition $=$ set of atoms (no negations!)
- Goal = set of atoms (no negations!)
- Effects $\quad=$ set of literals (making atoms true or false)
- In this setting:
- Positive effects are never "problematic":

Adding more facts to the state can only make more preconds/goals satisfied
" Only negative effects can "un-achieve" goals or preconditions
" And negative effects can only "un-achieve" goals or preconditions: We never need them

Delete Relaxation (1)

- Assuming positive conditions, let's remove all negative effects
- Example: (unstack ?x ?y)
- Before transformation:

```
:precondition (and (handempty) (clear ?x) (on ?x ?y))
:effect (and (not (handempty)) (holding ?x) (not (clear ?x)) (clear ?y)
(not (on ?x ?y) )
```

- After transformation:

```
:precondition (and (handempty) (clear ?x) (on ?x ?y))
:effect (and (holding ?x) (clear ?y))
```

- A fact that is true stays true

Is this a relaxation?

- Positive conditions $\boldsymbol{\rightarrow}$
- No solution can depend on a fact being false in a visited state
- No solution can disappear because we avoid making facts false

Delete Relaxation (2): Example

STS for the original problem

Delete-relaxed STRIPS problem

Delete Relaxation (5): Example

10

Delete-relaxed STRIPS problem

> No goal requires the absence of a fact

Satisfies the goal?

Delete Relaxation (6)

- Negative effects are also called "delete effects"
- They delete facts from the state
- So this is called delete relaxation
- "Relaxing the problem by getting rid of the delete effects"
- "Relaxed plan for \mathbf{P} " = plan for the delete-relaxed version of P

Delete relaxation does not mean that we "delete the relaxation" (anti-relax)!

Delete relaxation is only a relaxation if preconditions and goals are positive!

Delete Relaxation (7)

- Since solutions are preserved when facts are added:

A state where additional facts are true can never be "worse"! (Given positive preconds/goals)

Given two states (sets of true atoms) $\mathrm{s}, \mathrm{s}^{\prime}$:

$$
\mathbf{s} \supset \mathbf{s}^{\prime} \rightarrow \mathbf{h}^{*}(\mathbf{s})<=\mathbf{h}^{*}\left(\mathbf{s}^{\prime}\right)
$$

Delete Relaxation:

State Space Examples

Reachable State Space: BW size 2

Delete-Relaxed BW size 2: Detail View

Delete-Relaxed: "Loops" Removed

5 states
 8 transitions

The Optimal Delete Relaxation Heuristic

Optimal Delete Relaxation Heuristic

- If only delete relaxation is applied:
- We can calculate the optimal delete relaxation heuristic, $h^{+}(n)$
- $h^{+}(n)=$ the cost of an optimal solution to a delete-relaxed problem
starting in node n

Accuracy of h+ in Selected Domains

- How close is $h^{+}(n)$ to the true goal distance $h^{*}(n)$?
- Worst case asymptotic accuracy as problem size approaches infinity:
- Blocks world:
1/4
$\rightarrow h^{+}(n) \geq \frac{1}{4} h^{*}(n)$

Optimal plans in delete-relaxed Blocks World can be down to 25% of the length of optimal plans in "real" Blocks World

Relaxed:
unstack(A,B)
unstack(B,C)
unstack(C,D)
unstack(D, E)
unstack(E,F)
unstack(F,G)
unstack(G,H)
unstack(H,I)
stack(H,J)
DONE!

Accuracy of h+ in Selected Domains (2)

- How close is $h^{+}(n)$ to the true goal distance $h^{*}(n)$?
- Worst case asymptotic accuracy as problem size approaches infinity:
- Blocks world:
1/4
- Gripper domain:
- Logistics domain:
- Miconic-STRIPS:
- Miconic-Simple-ADL:
- Schedule:
- Satellite:

2/3
3/4
6/7
3/4
$1 / 4$
$1 / 2$
$\rightarrow h^{+}(n) \geq \frac{1}{4} h^{*}(n)$
(single robot moving balls)
(move packages using trucks, airplanes)
(elevators)
(elevators)
(job shop scheduling)
(satellite observations)

- Details:
- Malte Helmert and Robert Mattmüller Accuracy of Admissible Heuristic Functions in Selected Planning Domains

Example of Accuracy

- How close is $h^{+}(n)$ to the true goal distance $h^{*}(n)$?
- In practice:Also depends on the problem instance!

$$
\operatorname{pickup}(B) ; \operatorname{stack}(B, C) ; \operatorname{stack}(A, B)
$$

$\rightarrow \mathbf{h}+=3\left[\mathbf{h}^{*}=5\right]$
Good action!
unstack $(A, C) ; \operatorname{stack}(B, C) ; \operatorname{stack}(A, B)$
$\rightarrow \mathbf{h +}=\mathbf{3}\left[\mathbf{h}^{*}=7\right]$
Seems equally good as unstack, but is worse
unstack(A,C); pickup(B);
$\operatorname{stack}(B, C) ; \operatorname{stack}(A, B)$
$\rightarrow \mathbf{h +}=4\left[\mathbf{h}^{*}=7\right]$

- Performance also depends on the search strategy
- How sensitive it is to specific types of inaccuracy

Computing the
 Optimal Delete Relaxation Heuristic

Computingh+

- Is $h^{+}(n)$ easier to compute than $h^{*}(n)$?
- $h^{*}(n)=$ length of optimal plan for arbitrary planning problem
- Supports negative effects
- If we can execute either a1;a2 or a2;a1:
- a1 removes $p, a 2$ adds $p \rightarrow$ net result: add p
" a2 adds p, a1 removes $p \rightarrow$ net result: remove p
- Both orders must be considered
- $h^{+}(n)=$ length of optimal plan after removing negative effects
- If we can execute either a1;a2 or a2;a1:
- Must lead to the same state (add p1 before p2, or p2 before p1)
- Sufficient to consider one order - simpler?
- Incomplete analysis
- But the worst case for $h^{+}(n)$ is easier than the worst case for $h^{*}(n)$

Calculating h+

- Still difficult to calculate in genera!!
- NP-equivalent (reduced from PSPACE-equivalent)
- Since you must find optimal solutions to the relaxed problem
- Even a constant-factor approximation is NP-equivalent to compute!
- Finding $h(n)$ so that $\forall n . h(n) \geq c \cdot h^{+}(n)$
- Therefore, rarely used "as is"
- But forms the basis of many other heuristics

