
jonas.kvarnstrom@liu.se – 2019

Automated Planning
The Relaxation Principle:

A closer look

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2The Problem
 We have:

 An arbitrary planning problem 𝑃 = Σ, 𝑠0, 𝑆𝑔

 Suppose we want:

 A way to compute an admissible heuristic h(s)

▪ Given 𝑃 and some state 𝑠 in the search space

What do we do?

Where do we start?

How do we think?

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Fundamental Ideas (1)
 One obvious method:

Every time we need ℎ 𝑠 for some state 𝑠…

1. Solve P optimally starting in 𝑠, resulting in an actual solution 𝜋∗(𝑠)

2. Let ℎ 𝑠 = ℎ∗ 𝑠 = cost(𝜋∗(𝑠))

▪ Admissible – why?

 Obvious, but stupid

 If we find 𝜋(𝑠), we’re already done!

Solutions 𝜋 to P starting in s

(set of plans!)

Optimal solutions 𝝅∗ to PAlso: These are hard to find

(or we wouldn’t need

a heuristic)

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Fundamental Ideas (2)
 Let’s modify the obvious idea:

 Change / transform P to make it easy (quick) to solve

▪ But make sure optimal solutions

cannot become more expensive!

▪ Example: Add more goal states to 𝑆𝑔
 more ways to reach them!

 Compute an admissible heuristic:

▪ Solve the modified planning problem optimally

▪ ℎ(𝑠) = cost of optimal solution for modified problem

<=

ℎ∗(𝑠) = cost of optimal solution for original problem

▪ Definition of admissibility!

 Preferably:

▪ Keep ℎ(𝑠) as close as possible to ℎ∗ 𝑠 – we want strong cost information!

Relaxation will be one specific way

of (1) finding a simplifying transformation,

and (2) proving ”not-more-expensive”!

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Fundamental Ideas (3)
 More formally:

 Before planning, find a simpler problem 𝑃′, such that in every state 𝑠 (of 𝑃):

▪ We can quickly transform s into a state 𝑠′ for 𝑃′

▪ And we can quickly find an optimal solution 𝜋′ for 𝑃′ starting in 𝑠′

▪ And the solution is never more expensive: cost(𝜋′) ≤ cost(𝜋∗)

𝝅′: solution to another problem;

we only use it to compute a heuristic
𝝅∗: An optimal plan for P’

Solutions to P starting in s

(set of plans!)

Optimal solutions to P,

difficult to find

Solutions to P’

starting in s’

Optimal solutions to P’,

easy to find

s s’

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Fundamental Ideas (4)
 During planning:

 Every time we need ℎ 𝑠 for some state 𝑠:

▪ Transform 𝑠 to 𝑠′

▪ Quickly solve problem 𝑃′ optimally starting in 𝑠’,
resulting in solution 𝜋′ – for the transformed problem

▪ Let ℎ 𝑠 = cost 𝜋′

▪ Throw away 𝜋′: It isn’t interesting in itself

 We then know:
▪ h(s) = cost(𝜋′(𝑠)) = cost(optimal-solution(𝑃′)) ≤ cost(optimal-solution(𝑃))

▪ h(s) is admissible

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7Fundamental Ideas (5)
 Important:

 What we need: cost(optimal-solution(P')) ≤ cost(optimal-solution(P))

 Could use any transformation, even with completely disjoint solution sets,

if we just have a proof that optimal solutions to P' are not more expensive

Solutions to P

Optimal solutions to P,

difficult to find

Solutions to P'

Optimal solutions to P’,

easy to find

Difficult to find transformations, prove correctness – we need a method

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Fundamental Ideas (6)
 How to prove cost(optimal-solution(P')) ≤ cost(optimal-solution(P))?

 Sufficient criterion: One optimal solution to P remains a solution for P'

▪ cost(optimal-solution(P')) = min { cost(𝜋) | 𝜋 is any solution to P' } <=

cost(optimal-solution(P))
Includes the optimal solutions to P,

so min {…} cannot be greater

Solutions to P

Optimal solutions to P

Solutions to P'

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Fundamental Ideas (7)
 Another sufficient criterion: All solutions to P remain solutions for P'

▪ Stronger, but often easier to prove

▪ This is called relaxation: P’ is a relaxed version of P

▪ Relaxes the constraint on what is accepted as a solution:

The is-solution(plan)? test is "expanded, relaxed" to cover additional plans

Solutions to P'
Solutions to P

Optimal solutions to P

Optimal solutions to P’,

easy to find

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Fundamental Ideas (8)
 Case 1: P’ has identical cost (for some starting state s)

▪ Unlikely!

Solutions to P'
Solutions to P

Optimal solutions to POptimal solutions to P’,

cost 20, easy to find

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Fundamental Ideas (9)
 Case 2: P’ has lower cost (for some starting state s)

Solutions to P'
Solutions to P

Optimal solutions to P,

cost 20
Optimal solutions to P’,

cost 12, easy to find

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Relaxation for Planning Problems
 A classical planning problem 𝑃 = (Σ, 𝑠0, 𝑆𝑔) has a set of solutions

 Solutions(P) = { 𝜋 : 𝜋 is an executable action sequence
leading from to some state in }

 Suppose that:

 𝑃 = (Σ, 𝑠0, 𝑆𝑔) is a classical planning problem

 𝑃’ = (Σ′, 𝑠0
′ , 𝑆𝑔′) is another classical planning problem

 Solutions(𝑃) ⊆ Solutions(𝑃′)

 Then (and only then): 𝑃′ is a relaxation of 𝑃

Optimal in P

Now sol4 is optimal

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14

Init

Goal

Relaxation Example: Basis
 A simple planning problem (domain + instance)

 Blocks world, 3 blocks

 Initially all blocks on the table

 Goal: (only satisfied in)

 Solutions: All paths from init to goal (infinitely many – can have cycles)

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15

Init

Goal

Relaxation Example 1
 Example 1: Adding new actions

 All old solutions still valid, but new solutions may exist

 Modifies the STS by adding new edges / transitions

 This particular example: shorter solution appears

on(B,A)

on(A,C)

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16

Init

Goal

Relaxation Example 1b
 Example 1b: Adding new actions

 In other cases, the new actions may not ”help”

 New solutions (𝑠0 → 𝑠19 → 𝑠9) are longer as well as more expensive

 Still a relaxation!

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17

Goal

Init

Relaxation Example 1c
 Example 1c: Adding new actions

 May lead to previously unreachable states

 May not result in new solutions at all

 Still a relaxation: Old solutions remain

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18

GoalGoal

Relaxation Example 2
 Example 2: Adding goal states

 New goal formula:

 All old solutions still valid, but new solutions may exist

 This particular example: Optimal solution from 𝒔𝟎 retains the same length

 Retains the same STS

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Relaxation Example 3
 Example 3: Ignoring state variables

 Ignore the handempty fact in preconditions and effects

 Different state space, no simple addition or removal,

but all the old solutions (action sequences)

lead from 𝑠0
′ to new goal states in 𝑠𝑔

′ !

▪ 22 reachable states 26

▪ 42 transitions 72

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Relaxation Example 3b
 Example 3, enlarged

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Relaxation Example 4
 Example 4: Weakening preconditions of existing actions

 Precondition relaxation: Tiles can be moved across each other

▪ Now we have possible first moves: New transitions added to the STS

 All old solutions are still valid, but new ones are added

▪ To move “8” into place:

▪ Two steps to the right, two steps down, ends up in the same place as ” ”

GoalInitial

Possible first moves:

Can still be solved through search

The optimal solution for the relaxed 8-puzzle

can never be more expensive than the optimal solution for original 8-puzzle

Essentially the same as

adding actions: Results

in new transitions!

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Relaxation Heuristics: Summary
 Relaxation: One general principle

for designing admissible heuristics for optimal planning

 Find a way of transforming planning problems, so that

given a problem instance P:

▪ Computing its transformation P’ is easy (polynomial)

▪ Finding an optimal solution to P’ is easier than for P

▪ All solutions to P are solutions to P’,

but the new problem can have additional solutions as well

 Then the cost of an optimal solution to P’

is an admissible heuristic for the original problem P

This is only one principle!

There are others, not based on relaxation

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Search or Direct Computation (1)
 As stated:

 Compute an actual solution 𝜋′ for the relaxed problem P’

 Compute cost(𝜋′)

 Example: The 8-puzzle…

 Ignore blank(x,y) in preconditions and effects

 Run the problem through an optimal planner

 Compute the cost of the resulting plan 𝜋′

(:action move-up

:parameters (?t ?px ?py ?by)

:precondition (and

(tile ?t) (position ?px) (position ?py) (position ?by)

(dec ?by ?py) (blank ?px ?by) (at ?t ?px ?py))

:effect (and (not (blank ?px ?by)) (not (at ?t ?px ?py))

(blank ?px ?py) (at ?t ?px ?by)))

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Search or Direct Computation (2)
 But we only use 𝜋′ to compute its cost!

 Let’s analyze the problem…

▪ Each piece has to be moved to the intended row

▪ Each piece has to be moved to the intended column

▪ These are exactly the required actions given the relaxation!

 optimal cost for relaxed problem = sum of Manhattan distances

 admissible heuristic for original problem= sum of Manhattan distances

 Cost of any optimal solution 𝜋′ can be computed efficiently without 𝜋′:

𝑝∈𝑝𝑖𝑒𝑐𝑒𝑠

𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝) + 𝑦𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝)

But now we had to analyze the problem:

(1) Decide to ignore ”blank”

(2) Find ”sum of manhattan distances”

Soon: How do we automatically find

good relaxations + computation methods?

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Relaxation Heuristics: Balance
 The reason for relaxation is rapid calculation

 Shorter solutions are an unfortunate side effect:

Leads to less informative heuristics

 Relax too much not informative

▪ Example: Any piece can teleport

into the desired position

 ℎ(𝑛) = number of pieces

left to move

Original problem

Somewhat relaxed

Medium relaxation

Very relaxed

No problem left!

F
a
st

e
r

c
o

m
p

u
ta

ti
o

n

M
o

re
 in

fo
rm

a
tiv

e

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Relaxation Heuristics: Important Issues!

You cannot "use a relaxed problem as a heuristic".

What would that mean?

You use the cost of an optimal solution to the relaxed problem as a heuristic.

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

This is the problem.

The problem is not a heuristic.

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Relaxation Heuristics: Important Issues!
Solving the relaxed problem

can result in a more expensive solution

 inadmissible!

You have to solve it optimally to get the admissibility guarantee.

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

One solution to relaxed problem:

pickup(C)

putdown(C)

pickup(B)

stack(B,A)

pickup(C)

stack(C,B)

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30Relaxation Heuristics: Important Issues!

You don’t just solve the relaxed problem once.

Every time you reach a new state and want to calculate a heuristic,

you have to solve the relaxed problem

of getting from that state to the goal.

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

Calculate:

ℎ(𝑠0)
ℎ(𝑠1), ℎ(𝑠2), ℎ(𝑠3)

…then for every node you create,

depending on the strategy

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31Relaxation Heuristics: Important Issues!
Relaxation does not always mean "removing constraints"

in the sense of weakening preconditions (moving across tiles, removing walls, …)

Sometimes we get new goals. Sometimes the entire state space is transformed.

Sometimes action effects are modified, or some other change is made.

What defines relaxation: All old solutions are valid, new solutions may exist.

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Admissibility: Important Issues!

Relaxation is useful for finding admissible heuristics.

A heuristic cannot be admissible for some states.

Admissible == does not overestimate costs for any state!

GoalGoal

on(B,A)

on(A,C) or on(C,B)
on(B,A)

on(A,C) or on(C,B)

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33Admissibility: Important Issues!

If you are asked "why is a relaxation heuristic admissible?", don't answer

"because it cannot overestimate costs". This is the definition of admissibility!

"Why is it admissible?" == "Why can't it overestimate costs?"

Admissible heuristics can "lead you astray" and you can "visit" suboptimal solutions.

But with the right search strategy, such as A*,

the planner will eventually get around to finding an optimal solution.

This is not the case with A* + non-admissible heuristics.

